Dry thunderstorm

Last updated
A cloud-to-ground lightning strike during a dry thunderstorm near Wagga Wagga, Australia Cloud to ground lightning strikes south-west of Wagga Wagga.jpg
A cloud-to-ground lightning strike during a dry thunderstorm near Wagga Wagga, Australia

A dry thunderstorm is a thunderstorm that produces thunder and lightning, but where most of its precipitation evaporates before reaching the ground. [1] Dry lightning refers to lightning strikes occurring in this situation. Both are so common in the American West that they are sometimes used interchangeably. [2]


Dry thunderstorms occur essentially in dry conditions, and their lightning is a major cause of wildfires. [3] [4] [5] Because of that, the National Weather Service, and other agencies around the world, issue forecasts for its likelihood over large areas. [4] [6]

Where dry thunderstorms occur

Dry thunderstorms generally occur in deserts or places where the lower layers of the atmosphere usually contain little water vapor. Any precipitation that falls from elevated thunderstorms can be entirely evaporated as it falls through the lower dry layers. They are common during the summer months across much of western North America and other arid areas. The shaft of precipitation that can be seen falling from a cloud without reaching the ground is called "virga". [7]

A thunderstorm does not have to be completely dry to be considered dry; in many areas 0.1 inches (2.5 mm) is the threshold between a "wet" and "dry" thunderstorm. [1]


Dry thunderstorms are notable for two reasons: they are the most common natural origin of wildland fires, and they can produce strong gusty surface winds that can fan flames.[ citation needed ]

Dust storms

Strong winds often develop around dry thunderstorms as the evaporating precipitation causes excessive cooling of the air beneath the storm, which increases its density and thereby its weight relative to the surrounding air. This cool air then descends rapidly and fans out upon impacting the ground, an event often described as a dry microburst. As the gusty winds expand outward from the storm, dry soil and sand are often picked up by the strong winds, creating dust and sand storms known as haboobs. [8]


A lightning-sparked wildfire in Nevada. 2011-08-04 20 00 00 Susie Fire in the Adobe Range west of Elko Nevada.jpg
A lightning-sparked wildfire in Nevada.

In areas where trees or other vegetation are present, there is little to no rain that can prevent the lightning from causing them to catch fire. Storm winds also fan the fire and firestorm, causing it to spread more quickly. [9]

Pyrocumulonimbus are cumuliform clouds that can form over a large fire and that are particularly dry. [10] When the higher levels of the atmosphere are cooler, and the surface is thus warmed to extreme temperatures due to a wildfire, volcano, or other event, convection will occur, and produce clouds and lightning. They are similar to any cumulus cloud but ingest extra particulates from the fire. This increases the voltage difference between the base and the top of the cloud, helping to produce lightning.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Cumulonimbus cloud</span> Genus of dense, towering vertical clouds

Cumulonimbus is a dense, towering vertical cloud, typically forming from water vapor condensing in the lower troposphere that builds upward carried by powerful buoyant air currents. Above the lower portions of the cumulonimbus the water vapor becomes ice crystals, such as snow and graupel, the interaction of which can lead to hail and to lightning formation, respectively. When occurring as a thunderstorm these clouds may be referred to as thunderheads. Cumulonimbus can form alone, in clusters, or along squall lines. These clouds are capable of producing lightning and other dangerous severe weather, such as tornadoes, hazardous winds, and large hailstones. Cumulonimbus progress from overdeveloped cumulus congestus clouds and may further develop as part of a supercell. Cumulonimbus is abbreviated Cb.

<span class="mw-page-title-main">Thunderstorm</span> Type of weather with lightning and thunder

A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction.

<span class="mw-page-title-main">Storm</span> Disturbed state of an astronomical bodys atmosphere

A storm is any disturbed state of the natural environment or the atmosphere of an astronomical body. It may be marked by significant disruptions to normal conditions such as strong wind, tornadoes, hail, thunder and lightning, heavy precipitation, heavy freezing rain, strong winds, wind transporting some substance through the atmosphere such as in a dust storm, among other forms of severe weather.

<span class="mw-page-title-main">Supercell</span> Thunderstorm that is characterized by the presence of a mesocyclone

A supercell is a thunderstorm characterized by the presence of a mesocyclone: a deep, persistently rotating updraft. due to this, these storms are sometimes referred to as rotating thunderstorms. Of the four classifications of thunderstorms, supercells are the overall least common and have the potential to be the most severe. Supercells are often isolated from other thunderstorms, and can dominate the local weather up to 32 kilometres (20 mi) away. They tend to last 2–4 hours.

<span class="mw-page-title-main">Squall line</span> Line of thunderstorms along or ahead of a cold front

A squall line, or more accurately a quasi-linear convective system (QLCS), is a line of thunderstorms, often forming along or ahead of a cold front. In the early 20th century, the term was used as a synonym for cold front. Linear thunderstorm structures often contain heavy precipitation, hail, frequent lightning, strong straight-line winds, and occasionally tornadoes or waterspouts. Particularly strong straight-line winds can occur where the linear structure forms into the shape of a bow echo. Tornadoes can occur along waves within a line echo wave pattern (LEWP), where mesoscale low-pressure areas are present. Some bow echoes can grow to become derechos as they move swiftly across a large area. On the back edge of the rainband associated with mature squall lines, a wake low can be present, on very rare occasions associated with a heat burst.

<span class="mw-page-title-main">Haboob</span> Type of intense dust storm

A haboob is a type of intense dust storm carried on an atmospheric gravity current, also known as a weather front. Haboobs occur regularly in dry land area regions throughout the world.

<span class="mw-page-title-main">Outflow boundary</span> Mesoscale boundary separating outflow from the surroundign air

An outflow boundary, also known as a gust front, is a storm-scale or mesoscale boundary separating thunderstorm-cooled air (outflow) from the surrounding air; similar in effect to a cold front, with passage marked by a wind shift and usually a drop in temperature and a related pressure jump. Outflow boundaries can persist for 24 hours or more after the thunderstorms that generated them dissipate, and can travel hundreds of kilometers from their area of origin. New thunderstorms often develop along outflow boundaries, especially near the point of intersection with another boundary. Outflow boundaries can be seen either as fine lines on weather radar imagery or else as arcs of low clouds on weather satellite imagery. From the ground, outflow boundaries can be co-located with the appearance of roll clouds and shelf clouds.

<span class="mw-page-title-main">Index of meteorology articles</span>

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

<span class="mw-page-title-main">Heat burst</span> Sudden increase in atmospheric temperature

In meteorology, a heat burst is a rare atmospheric phenomenon characterized by a sudden, localized increase in air temperature near the Earth's surface. Heat bursts typically occur during night-time and are associated with decaying thunderstorms. They are also characterized by extremely dry air and are sometimes associated with very strong, even damaging, winds.

<span class="mw-page-title-main">Weather front</span> Boundary separating two masses of air of different densities

A weather front is a boundary separating air masses for which several characteristics differ, such as air density, wind, temperature, and humidity. Disturbed and unstable weather due to these differences often arises along the boundary. For instance, cold fronts can bring bands of thunderstorms and cumulonimbus precipitation or be preceded by squall lines, while warm fronts are usually preceded by stratiform precipitation and fog. In summer, subtler humidity gradients are known as dry lines can trigger severe weather. Some fronts produce no precipitation and little cloudiness, although there is invariably always a wind shift.

<span class="mw-page-title-main">Cumulus Congestus cloud</span> Form of cumulus clouds

Cumulus congestus clouds, also known as towering cumulus, are a form of cumulus that can be based in the low or middle height ranges. They achieve considerable vertical development in areas of deep, moist convection. They are an intermediate stage between cumulus mediocris and cumulonimbus, sometimes producing showers of snow, rain, or ice pellets. Precipitation that evaporates before reaching the surface is virga.

<span class="mw-page-title-main">Cumulonimbus flammagenitus</span> Thunderstorm cloud that forms above a heat source

The cumulonimbus flammagenitus cloud (CbFg), also known as the pyrocumulonimbus cloud, is a type of cumulonimbus cloud that forms above a source of heat, such as a wildfire or volcanic eruption, and may sometimes even extinguish the fire that formed it. It is the most extreme manifestation of a flammagenitus cloud. According to the American Meteorological Society’s Glossary of Meteorology, a flammagenitus is "a cumulus cloud formed by a rising thermal from a fire, or enhanced by buoyant plume emissions from an industrial combustion process."

<span class="mw-page-title-main">Air-mass thunderstorm</span> Thunderstorm that is generally weak and usually not severe

An air-mass thunderstorm, also called an "ordinary", "single cell", or "garden variety" thunderstorm, is a thunderstorm that is generally weak and usually not severe. These storms form in environments where at least some amount of Convective Available Potential Energy (CAPE) is present, but very low levels of wind shear and helicity. The lifting source, which is a crucial factor in thunderstorm development, is usually the result of uneven heating of the surface, though they can be induced by weather fronts and other low-level boundaries associated with wind convergence. The energy needed for these storms to form comes in the form of insolation, or solar radiation. Air-mass thunderstorms do not move quickly, last no longer than an hour, and have the threats of lightning, as well as showery light, moderate, or heavy rainfall. Heavy rainfall can interfere with microwave transmissions within the atmosphere.

<span class="mw-page-title-main">Severe weather</span> Any dangerous meteorological phenomenon

Severe weather is any dangerous meteorological phenomenon with the potential to cause damage, serious social disruption, or loss of human life. Types of severe weather phenomena vary, depending on the latitude, altitude, topography, and atmospheric conditions. High winds, hail, excessive precipitation, and wildfires are forms and effects of severe weather, as are thunderstorms, downbursts, tornadoes, waterspouts, tropical cyclones, and extratropical cyclones. Regional and seasonal severe weather phenomena include blizzards (snowstorms), ice storms, and duststorms. Extreme weather phenomena which cause extreme heat, cold, wetness or drought often will bring severe weather events. One of the principal effects of anthropogenic climate change is changes in severe and extreme weather patterns.

<span class="mw-page-title-main">Outflow (meteorology)</span> Air that flows outwards from a storm system

Outflow, in meteorology, is air that flows outwards from a storm system. It is associated with ridging, or anticyclonic flow. In the low levels of the troposphere, outflow radiates from thunderstorms in the form of a wedge of rain-cooled air, which is visible as a thin rope-like cloud on weather satellite imagery or a fine line on weather radar imagery. For observers on the ground, a thunderstorm outflow boundary often approaches in otherwise clear skies as a low, thick cloud that brings with it a gust front.

Convective storm detection is the meteorological observation, and short-term prediction, of deep moist convection (DMC). DMC describes atmospheric conditions producing single or clusters of large vertical extension clouds ranging from cumulus congestus to cumulonimbus, the latter producing thunderstorms associated with lightning and thunder. Those two types of clouds can produce severe weather at the surface and aloft.

<span class="mw-page-title-main">North American monsoon</span> Pattern of thunderstorms and rainfall in the southwestern United States and northwestern Mexico

The North American monsoon, variously known as the Southwest monsoon, the Mexican monsoon, the New Mexican monsoon, or the Arizona monsoon is a pattern of pronounced increase in thunderstorms and rainfall over large areas of the southwestern United States and northwestern Mexico, typically occurring between June and mid-September. During the monsoon, thunderstorms are fueled by daytime heating and build up during the late afternoon and early evening. Typically, these storms dissipate by late night, and the next day starts out fair, with the cycle repeating daily. The monsoon typically loses its energy by mid-September when much drier conditions are reestablished over the region. Geographically, the North American monsoon precipitation region is centered over the Sierra Madre Occidental in the Mexican states of Sinaloa, Durango, Sonora and Chihuahua.

<span class="mw-page-title-main">Wake low</span> Weather system

A wake low, or wake depression, is a mesoscale low-pressure area which trails the mesoscale high following a squall line. Due to the subsiding warm air associated with the system's formation, clearing skies are associated with the wake low. Once difficult to detect in surface weather observations due to their broad spacing, the formation of mesoscale weather station networks, or mesonets, has increased their detection. Severe weather, in the form of high winds, can be generated by the wake low when the pressure difference between the mesohigh preceding it and the wake low is intense enough. When the squall line is in the process of decay, heat bursts can be generated near the wake low. Once new thunderstorm activity along the squall line concludes, the wake low associated with it weakens in tandem.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.


  1. 1 2 Albuquerque Office. "Dry thunderstorms". Fire Weather Topics. National Weather Service . Retrieved December 31, 2019.
  2. "What Is a Dry Thunderstorm?". weather.about.com . Retrieved December 31, 2019.
  3. Hessilt, Thomas D.; Abatzoglou, J. T.; Chen, Y.; Randerson, J. T.; Scholten, R. C.; van der Werf, Guido; Veraverbeke, S. (April 19, 2022). "Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America". Environmental Research Letters. 17 (5): 054008. doi:10.1088/1748-9326/ac6311. S2CID   247869214.
  4. 1 2 "Frequently Asked Questions About Lightning". Severe Weather 101. NSSL. Retrieved December 31, 2019.
  5. "Dry Lightning". Wild Fire Assessment System. US Forest Service. Retrieved December 31, 2019.
  6. Miriam Rorig; Sue Ferguson; Steven McKay (17 November 2003). Forecasting Dry Lightning in the Western United States (PDF). The 5th Symposium on Fire and Forest Meteorology and the 2nd International Wildland Fire Ecology and Fire Management Congress. Orlando, FL. Retrieved December 31, 2019.
  7. Ferguson, Sue A.; Steven, J. McKay; Miriam, L. Rorig; Werth, Paul (May 2007). "Model-Generated Predictions of Dry Thunderstorm Potential" (pdf). Journal of Applied Meteorology and Climatology. 46 (5): 605–614. Bibcode:2007JApMC..46..605R. doi:10.1175/JAM2482.1 . Retrieved December 31, 2019.
  8. Idso, S. B.; Ingram, R. S.; Pritchard, J. M. (1972). "An American Haboob". Bulletin of the American Meteorological Society. 53 (10): 930–935. Bibcode:1972BAMS...53..930I. doi: 10.1175/1520-0477(1972)053<0930:AAH>2.0.CO;2 .
  9. "Dry lightning and dry thunderstorms cause the majority of wildfires in the Western US - including California fires". www.californiagreensolutions.com. California Green Solutions. 2006. Retrieved December 31, 2019.
  10. "Pyrocumulonimbus". AMS Glossary. Retrieved December 31, 2019.