Panmixia

Last updated

Panmixia (or panmixis) means uniform random fertilization. [1] [2] A panmictic population is one where all potential parents may contribute equally to the gamete pool, and that these gametes are uniformly distributed within the gamete population (gamodeme). This assumes that there are no hybridising restrictions within the parental population: neither genetics, cytogenetics nor behavioural; and neither spatial nor temporal (see also Quantitative genetics for further discussion). Therefore, all gamete recombination (fertilization) is uniformly possible. Both the Wahlund effect and the Hardy Weinberg equilibrium assume that the overall population is panmictic. [3]

Contents

In genetics and heredity, random mating [4] usually implies the hybridising (mating) of individuals regardless of any spatial, physical, genetical, temporal or social preference. That is, the mating between two organisms is not influenced by any environmental, nor hereditary interaction. Hence, potential mates have an equal chance of being contributors to the fertilizing gamete pool. If there is no random sub-sampling of gametes involved in the fertilization cohort, panmixia has occurred. Such uniform random mating is distinct from lack of natural selection: in viability selection for instance, selection occurs before mating.

Description

In simple terms, panmixia (or panmicticism) is the ability of individuals in a population to interbreed without restrictions; individuals are able to move about freely within their habitat, possibly over a range of hundreds to thousands of miles, and thus breed with other members of the population.

To signify the importance of this, imagine several different finite populations of the same species (for example: a grazing herbivore), isolated from each other by some physical characteristic of the environment (dense forest areas separating grazing lands). As time progresses, natural selection and genetic drift will slowly move each population toward genetic differentiation that would make each population genetically unique (that could eventually lead to speciation events or extirpation).

However, if the separating factor is removed before this happens (e.g. a road is cut through the forest), and the individuals are allowed to move about freely, the individual populations will still be able to interbreed. As the species's populations interbreed over time, they become more genetically uniform, functioning again as a single panmictic population.

In attempting to describe the mathematical properties of structured populations, Sewall Wright proposed a "factor of Panmixia" (P) to include in the equations describing the gene frequencies in a population, and accounting for a population's tendency towards panmixia, while a "factor of Fixation" (F) would account for a population's departure from the Hardy–Weinberg expectation, due to less than panmictic mating. In this formulation, the two quantities are complementary, i.e. P = 1  F. From this factor of fixation, he later developed the F statistics.

Background information

In a panmictic species, all of the individuals of a single species are potential partners, and the species gives no mating restrictions throughout the population. [5] Panmixia can also be referred to as random mating, referring to a population that randomly chooses their mate, rather than sorting between the adults of the population. [6]

Panmixia allows for species to reach genetic diversity through gene flow more efficiently than monandry species. However, outside population factors, like drought and limited food sources, can affect the way any species will mate. [7] When scientists examine species mating to understand their mating style, they look at factors like genetic markers, genetic differentiation, and gene pool. [8]

Panmictic species

Pantala flavescens is considered as a global panmictic population. Pantala flavescens-Kadavoor-2017-05-04-002.jpg
Pantala flavescens is considered as a global panmictic population.

A panmictic population of Monostroma latissimum, a marine green algae, shows sympatric speciation in southwest Japanese islands. Although panmictic, the population is diversifying. [9] Dawson's burrowing bee, Amegilla dawsoni, may be forced to aggregate in common mating areas due to uneven resource distribution in its harsh desert environment. [7] Pantala flavescens should be considered as a global panmictic population. [10]

  1. Anguilla rostrata, or the American eel, exhibits panmixia throughout the entire species. This allows the eel to have phenotypic variation in their offspring and survive in a wide range of environmental conditions [11] [8]
  2. In 2016, BMC Evolutionary Biology conducted a study on Pachygrapsus marmoratus, the marbled crab, marking them as panmictic species. The study claimed that the crabs' mating behavior is characterized by genetic differentiation due to geographic breaks across its distribution range and not panmixia [12]
  3. In a heterogeneous environment such as the forests of Oregon, United States, Douglas squirrels (Tamiasciurus douglasii) exhibit local patterns of adaptation. In a study conducted by Chaves (2014) a population along an entire transect was found to be panmictic. Traits observed in this study included skull shape, fur color, etc.
  4. Swordfish based in the Indian Ocean (Xiphias gladius) have been found to be a single panmictic population. Markers used in the study carried out by Muths et al. (2013) found large spatial and temporal homogeneity in genetic structure satisfactory in order to consider the swordfish a singular panmictic population.

See also

Related Research Articles

Microevolution is the change in allele frequencies that occurs over time within a population. This change is due to four different processes: mutation, selection, gene flow and genetic drift. This change happens over a relatively short amount of time compared to the changes termed macroevolution.

<span class="mw-page-title-main">Mendelian inheritance</span> Type of biological inheritance

Mendelian inheritance is a type of biological inheritance following the principles originally proposed by Gregor Mendel in 1865 and 1866, re-discovered in 1900 by Hugo de Vries and Carl Correns, and later popularized by William Bateson. These principles were initially controversial. When Mendel's theories were integrated with the Boveri–Sutton chromosome theory of inheritance by Thomas Hunt Morgan in 1915, they became the core of classical genetics. Ronald Fisher combined these ideas with the theory of natural selection in his 1930 book The Genetical Theory of Natural Selection, putting evolution onto a mathematical footing and forming the basis for population genetics within the modern evolutionary synthesis.

Population is the term typically used to refer to the number of people in a single area. Governments conduct a census to quantify the size of a resident population within a given jurisdiction. The term is also applied to non-human animals, microorganisms, and plants, and has specific uses within such fields as ecology and genetics.

Speciation is the evolutionary process by which populations evolve to become distinct species. The biologist Orator F. Cook coined the term in 1906 for cladogenesis, the splitting of lineages, as opposed to anagenesis, phyletic evolution within lineages. Charles Darwin was the first to describe the role of natural selection in speciation in his 1859 book On the Origin of Species. He also identified sexual selection as a likely mechanism, but found it problematic.

<span class="mw-page-title-main">Hybrid (biology)</span> Offspring of cross-species reproduction

In biology, a hybrid is the offspring resulting from combining the qualities of two organisms of different varieties, subspecies, species or genera through sexual reproduction. Generally, it means that each cell has genetic material from two different organisms, whereas an individual where some cells are derived from a different organism is called a chimera. Hybrids are not always intermediates between their parents such as in blending inheritance, but can show hybrid vigor, sometimes growing larger or taller than either parent. The concept of a hybrid is interpreted differently in animal and plant breeding, where there is interest in the individual parentage. In genetics, attention is focused on the numbers of chromosomes. In taxonomy, a key question is how closely related the parent species are.

<span class="mw-page-title-main">Quantitative genetics</span> Study of the inheritance of continuously variable traits

Quantitative genetics is the study of quantitative traits, which are phenotypes that vary continuously—such as height or mass—as opposed to phenotypes and gene-products that are discretely identifiable—such as eye-colour, or the presence of a particular biochemical.

<span class="mw-page-title-main">Sympatric speciation</span> Evolution of a new species from an ancestor in the same location

In evolutionary biology, sympatric speciation is the evolution of a new species from a surviving ancestral species while both continue to inhabit the same geographic region. In evolutionary biology and biogeography, sympatric and sympatry are terms referring to organisms whose ranges overlap so that they occur together at least in some places. If these organisms are closely related, such a distribution may be the result of sympatric speciation. Etymologically, sympatry is derived from Greek συν (sun-) 'together' and πατρίς (patrís) 'fatherland'. The term was coined by Edward Bagnall Poulton in 1904, who explains the derivation.

<span class="mw-page-title-main">Polymorphism (biology)</span> Occurrence of two or more clearly different morphs or forms in the population of a species

In biology, polymorphism is the occurrence of two or more clearly different morphs or forms, also referred to as alternative phenotypes, in the population of a species. To be classified as such, morphs must occupy the same habitat at the same time and belong to a panmictic population.

<span class="mw-page-title-main">Sympatry</span> Biological concept

In biology, two related species or populations are considered sympatric when they exist in the same geographic area and thus frequently encounter one another. An initially interbreeding population that splits into two or more distinct species sharing a common range exemplifies sympatric speciation. Such speciation may be a product of reproductive isolation – which prevents hybrid offspring from being viable or able to reproduce, thereby reducing gene flow – that results in genetic divergence. Sympatric speciation may, but need not, arise through secondary contact, which refers to speciation or divergence in allopatry followed by range expansions leading to an area of sympatry. Sympatric species or taxa in secondary contact may or may not interbreed.

<span class="mw-page-title-main">Molecular ecology</span> Subdiscipline of ecology

Molecular ecology is a subdiscipline of ecology that is concerned with applying molecular genetic techniques to ecological questions. It is virtually synonymous with the field of "Ecological Genetics" as pioneered by Theodosius Dobzhansky, E. B. Ford, Godfrey M. Hewitt, and others. Molecular ecology is related to the fields of population genetics and conservation genetics.

<span class="mw-page-title-main">Hybrid zone</span> Population genetics term

A hybrid zone exists where the ranges of two interbreeding species or diverged intraspecific lineages meet and cross-fertilize. Hybrid zones can form in situ due to the evolution of a new lineage but generally they result from secondary contact of the parental forms after a period of geographic isolation, which allowed their differentiation. Hybrid zones are useful in studying the genetics of speciation as they can provide natural examples of differentiation and gene flow between populations that are at some point on the continuum between diverging populations and separate species with reproductive isolation.

The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.

In biology, a cline is a measurable gradient in a single characteristic of a species across its geographical range. Clines usually have a genetic, or phenotypic character. They can show either smooth, continuous gradation in a character, or more abrupt changes in the trait from one geographic region to the next.

<span class="mw-page-title-main">Introduction to evolution</span> Non-technical overview of the subject of biological evolution

In biology, evolution is the process of change in all forms of life over generations, and evolutionary biology is the study of how evolution occurs. Biological populations evolve through genetic changes that correspond to changes in the organisms' observable traits. Genetic changes include mutations, which are caused by damage or replication errors in organisms' DNA. As the genetic variation of a population drifts randomly over generations, natural selection gradually leads traits to become more or less common based on the relative reproductive success of organisms with those traits.

<span class="mw-page-title-main">Species</span> Basic unit of taxonomic classification, below genus

A species is a population of organisms in which any two individuals of the appropriate sexes or mating types can produce fertile offspring, typically by sexual reproduction. It is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. Other ways of defining species include their karyotype, DNA sequence, morphology, behaviour, or ecological niche. In addition, paleontologists use the concept of the chronospecies since fossil reproduction cannot be examined. The most recent rigorous estimate for the total number of species of eukaryotes is between 8 and 8.7 million. About 14% of these had been described by 2011. All species are given a two-part name, a "binomial". The first part of a binomial is the genus to which the species belongs. The second part is called the specific name or the specific epithet. For example, Boa constrictor is one of the species of the genus Boa, with constrictor being the species' epithet.

<span class="mw-page-title-main">Bateson–Dobzhansky–Muller model</span> Model of the evolution of genetic incompatibility

The Bateson–Dobzhansky–Muller model, also known as Dobzhansky–Muller model, is a model of the evolution of genetic incompatibility, important in understanding the evolution of reproductive isolation during speciation and the role of natural selection in bringing it about. The theory was first described by William Bateson in 1909, then independently described by Theodosius Dobzhansky in 1934, and later elaborated in different forms by Herman Muller, H. Allen Orr and Sergey Gavrilets.

<span class="mw-page-title-main">Isolation by distance</span>

Isolation by distance (IBD) is a term used to refer to the accrual of local genetic variation under geographically limited dispersal. The IBD model is useful for determining the distribution of gene frequencies over a geographic region. Both dispersal variance and migration probabilities are variables in this model and both contribute to local genetic differentiation. Isolation by distance is usually the simplest model for the cause of genetic isolation between populations. Evolutionary biologists and population geneticists have been exploring varying theories and models for explaining population structure. Yoichi Ishida compares two important theories of isolation by distance and clarifies the relationship between the two. According to Ishida, Sewall Wright's isolation by distance theory is termed ecological isolation by distance while Gustave Malécot's theory is called genetic isolation by distance. Isolation by distance is distantly related to speciation. Multiple types of isolating barriers, namely prezygotic isolating barriers, including isolation by distance, are considered the key factor in keeping populations apart, limiting gene flow.

<span class="mw-page-title-main">Ecological speciation</span>

Ecological speciation is a form of speciation arising from reproductive isolation that occurs due to an ecological factor that reduces or eliminates gene flow between two populations of a species. Ecological factors can include changes in the environmental conditions in which a species experiences, such as behavioral changes involving predation, predator avoidance, pollinator attraction, and foraging; as well as changes in mate choice due to sexual selection or communication systems. Ecologically-driven reproductive isolation under divergent natural selection leads to the formation of new species. This has been documented in many cases in nature and has been a major focus of research on speciation for the past few decades.

This glossary of genetics and evolutionary biology is a list of definitions of terms and concepts used in the study of genetics and evolutionary biology, as well as sub-disciplines and related fields, with an emphasis on classical genetics, quantitative genetics, population biology, phylogenetics, speciation, and systematics. It has been designed as a companion to Glossary of cellular and molecular biology, which contains many overlapping and related terms; other related glossaries include Glossary of biology and Glossary of ecology.

Allochronic speciation is a form of speciation arising from reproductive isolation that occurs due to a change in breeding time that reduces or eliminates gene flow between two populations of a species. The term allochrony is used to describe the general ecological phenomenon of the differences in phenology that arise between two or more species—speciation caused by allochrony is effectively allochronic speciation.

References

  1. King C and Stanfield W.D. (1997). Dictionary of genetics. Oxford University Press. ISBN   9780195143249. p. 262: "Panmixia (panmixis): random mating as contrasted with assortative mating."
  2. Merriam-Webster Medical Dictionary. "Panmixia: Random mating within a breeding population."
  3. Gayon, Jean; Cobb, Matthew (1998), Darwinism's Struggle for Survival: Heredity and the Hypothesis of Natural Selection, Cambridge University Press, p. 158, ISBN   978-0-521-56250-8
  4. Choudhuri, Supratim (2014-05-09). Bioinformatics for Beginners: Genes, Genomes, Molecular Evolution, Databases and Analytical Tools. Elsevier. ISBN   978-0-12-410510-2.
  5. "Of Terms in Biology: Panmictic".
  6. "Random Mating". NOAA.
  7. 1 2 Beveridge, M.; Simmons, L. W. (2006). "Panmixia: An example from Dawson's burrowing bee (Amegilla dawsoni) (Hymenoptera: Anthophorini)". Molecular Ecology. 15 (4): 951–7. doi:10.1111/j.1365-294X.2006.02846.x. PMID   16599959. S2CID   22442167.
  8. 1 2 Pujolar, J. M. (2013). "Conclusive evidence for panmixia in the American eel". Molecular Ecology. 22 (7): 1761–2. doi: 10.1111/mec.12143 . PMID   23620904. S2CID   24345855.
  9. Bast, Felix; Kubota, Satoshi; Okuda, Kazuo (11 November 2014). "Phylogeographic assessment of panmictic Monostroma species from Kuroshio Coast, Japan, reveals sympatric speciation". Journal of Applied Phycology. 27 (4): 1725–1735. doi:10.1007/s10811-014-0452-x. S2CID   17236629.
  10. Daniel Troast; Frank Suhling; Hiroshi Jinguji; Göran Sahlén; Jessica Ware (2016). "A Global Population Genetic Study of Pantala flavescens". PLOS ONE . 11 (3): e0148949. Bibcode:2016PLoSO..1148949T. doi: 10.1371/journal.pone.0148949 . PMC   4775058 . PMID   26934181.
  11. Côté, Caroline L.; Castonguay, Martin; Kalujnaia, Mcwilliam; Cramb, Gordon; Bernatchez, Louis (2014). "In absence of local adaptation, plasticity and spatially varying selection rule: A view from genomic reaction norms in a panmictic species (Anguilla rostrata)". BMC Genomics. 15: 403. doi: 10.1186/1471-2164-15-403 . PMC   4229938 . PMID   24884429.
  12. Fratini, Sara; Ragionieri, Lapo; Deli, Temim; Harrer, Alexandra; Marino, Ilaria A. M.; Cannicci, Stefano; Zane, Lorenzo; Schubart, Christoph D. (2016). "Unravelling population genetic structure with mitochondrial DNA in a notional panmictic coastal crab species: Sample size makes the difference". BMC Evolutionary Biology. 16: 150. doi: 10.1186/s12862-016-0720-2 . PMC   4960869 . PMID   27455997.

Further reading