Naked mole-rat

Last updated

Naked mole-rat
Temporal range: 4.3–0  Ma
O
S
D
C
P
T
J
K
Pg
N
Early Pliocene - Recent [1]
Nacktmull.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Rodentia
Parvorder: Phiomorpha
Family: Heterocephalidae
Landry, 1957 [3] [4]
Genus: Heterocephalus
Rüppell, 1842 [5]
Species:
H. glaber
Binomial name
Heterocephalus glaber
Rüppell, 1842 [5]
Heterocephalus glaber dis.png
Distribution of the naked mole-rat
Various aged naked mole-rats

The naked mole-rat (Heterocephalus glaber), also known as the sand puppy, [6] is a burrowing rodent native to the Horn of Africa and parts of Kenya, notably in Somali regions. [1] It is closely related to the blesmols and is the only species in the genus Heterocephalus. [7]

Contents

The naked mole-rat exhibits a highly unusual set of physiological and behavioral traits that allow it to thrive in a harsh underground environment; most notably its being the only mammalian thermoconformer with an almost entirely ectothermic (cold-blooded) form of body temperature regulation, [8] as well as exhibiting eusociality, a complex social structure including a reproductive division of labor, separation of reproductive and non-reproductive castes, and cooperative care of young. [9] The closely related Damaraland mole-rat (Fukomys damarensis) is the only other known eusocial mammal. [10] [11] Naked mole-rats lack pain sensitivity in their skin, and have very low metabolic and respiratory rates. The animal also is remarkable for its longevity and resistance to cancer and oxygen deprivation.

While formerly considered to belong to the same family as other African mole-rats, Bathyergidae, more recent investigation places it in a separate family, Heterocephalidae. [4] [12] [13]

Description

Typical individuals are 8 to 10 cm (3 to 4 in) long and weigh 30 to 35 grams (1.1 to 1.2 oz). Breeding females are larger and may weigh well over 50 grams (1.8 oz), the largest reaching 80 grams (2.8 oz). They are well adapted to their underground existence. Their eyes are quite small, and their visual acuity is poor. Their legs are thin and short; however, they are highly adept at moving underground and can move backward as fast as they can move forward. Their large, protruding teeth are used to dig and their lips are sealed just behind the teeth, preventing soil from filling their mouths while digging. [1] [14] About a quarter of their musculature is used in the closing of their jaws while they dig. They have little hair (hence the common name) and wrinkled pink or yellowish skin. They lack an insulating layer in the skin.

Physiology

Metabolism and respiration

The naked mole-rat is well adapted to the limited availability of oxygen within the tunnels of its typical habitat. It has underdeveloped lungs and its hemoglobin has a high affinity for oxygen, increasing the efficiency of oxygen uptake. [15] [16] [17] It has a very low respiration and metabolic rate for an animal of its size, about 70% that of a mouse, thus using oxygen minimally. [18] In response to long periods of hunger, its metabolic rate can be reduced by up to 25 percent. [16]

The naked mole-rat survives for at least 5 hours in air that contains only 5% oxygen; it does not show any significant signs of distress and continues normal activity. It can live in an atmosphere of 80% CO
2
and 20% oxygen. In zero-oxygen atmosphere, it can survive 18 minutes apparently without suffering any harm (but none survived a test of 30 minutes). During the anoxic period it loses consciousness, its heart rate drops from about 200 to 50 beats per minute, and breathing stops apart from sporadic breathing attempts. When deprived of oxygen, the animal uses fructose in its anaerobic glycolysis, producing lactic acid. This pathway is not inhibited by acidosis as happens with glycolysis of glucose. [16] [17] As of 2017, it was not known how the naked mole-rat survives acidosis without tissue damage. [19]

Thermoregulation

The naked mole-rat does not regulate its body temperature in typical mammalian fashion. They are thermoconformers rather than thermoregulators in that, unlike other mammals, body temperature tracks ambient temperatures. The relationship between oxygen consumption and ambient temperature switches from a typical poikilothermic pattern to a homeothermic mode when temperature is at 29 °C or higher. [20] At lower temperatures, naked mole-rats can use behavioral thermoregulation. For example, cold naked mole-rats huddle together or seek shallow parts of the burrows that are warmed by the sun. Conversely, when they get too hot, naked mole-rats retreat to the deeper, cooler parts of the burrows.

Pain insensitivity

The skin of naked mole-rats lacks neurotransmitters in their cutaneous sensory fibers. As a result, the naked mole-rats feel no pain when they are exposed to acid or capsaicin. When they are injected with substance P, a type of neurotransmitter, the pain signaling works as it does in other mammals but only with capsaicin and not with acids. This is proposed to be an adaptation to the animal living in high levels of carbon dioxide due to poorly ventilated living spaces which would cause acid to build up in their body tissues. [21]

Naked mole-rats' substance P deficiency has also been tied to their lack of the histamine-induced itching and scratching behavior typical of rodents. [22]

Resistance to cancer

Naked mole-rats have a high resistance to tumours, although it is likely that they are not entirely immune to related disorders. [23] A potential mechanism that averts cancer is an "over-crowding" gene, p16, which prevents cell division once individual cells come into contact (known as "contact inhibition"). The cells of most mammals, including naked mole-rats, undergo contact inhibition via the gene p27 which prevents cellular reproduction at a much higher cell density than p16 does. The combination of p16 and p27 in naked mole-rat cells is a double barrier to uncontrolled cell proliferation, one of the hallmarks of cancer. [24]

In 2013, scientists reported that the reason naked mole-rats do not get cancer can be attributed to an "extremely high-molecular-mass hyaluronan" (HMW-HA) (a natural sugary substance), which is over "five times larger" than that in cancer-prone humans and cancer-susceptible laboratory animals. [25] [26] [27] The scientific report was published a month later as the cover story of the journal Nature . [28] A few months later, the same University of Rochester research team announced that naked mole-rats have ribosomes that produce extremely error-free proteins. [29] [30] Because of both of these discoveries, the journal Science named the naked mole-rat "Vertebrate of the Year" for 2013. [31]

In 2016, a report was published that recorded the first ever discovered malignancies in two naked mole-rats. [23] [32] [33] However, both animals were captive-born at zoos, and hence lived in an environment with 21% atmospheric oxygen compared to their natural 2–9%, which may have promoted tumorigenesis. [34]

The Golan Heights blind mole-rat (Spalax golani) and the Judean Mountains blind mole-rat (Spalax judaei) are also resistant to cancer, but by a different mechanism. [35]

In July 2023 a study reported the transference of the gene responsible for HMW-HA from a naked mole rat to mice leading to improved health and an approximate 4.4 percent increase in median lifespan for the mice. [36] [37]

Longevity

Naked mole-rats can live longer than any other rodent, with lifespans in excess of 37 years; the next longest-lived rodent is the African porcupine at 28 years. [38] [39] [40] The mortality rate of the species does not increase with age, and thus does not conform to that of most mammals (as frequently defined by the Gompertz-Makeham law of mortality). [40] Naked mole-rats are highly resistant to cancer [41] ) and maintain healthy vascular function longer in their lifespan than shorter-living rats. [42] Queens age more slowly than nonbreeders. [43]

The mechanisms underlying naked mole-rat longevity are debated, but are thought to be related to their ability to substantially reduce their metabolism in response to adverse conditions, and so prevent aging-induced damage from oxidative stress. This has been referred to as "living their life in pulses". [44] Their longevity has also been attributed to "protein stability". [45] Because of their extraordinary longevity, an international effort was put into place to sequence the genome of the naked mole-rat. [46] A draft genome was made available in 2011 [47] [48] [49] with an improved version released in 2014. [50] Its somatic number is 2n = 60. [7] Further transcriptome sequencing revealed that genes related to mitochondria and oxidation reduction are expressed more than they are in mice, which may contribute to their longevity. [51]

The DNA repair transcriptomes of the liver of humans, naked mole-rats, and mice were compared. [52] The maximum lifespans of humans, naked mole-rats, and mice are respectively c. 120, 30 and 3 years. The longer-lived species, humans and naked mole-rats, expressed DNA repair genes, including core genes in several DNA repair pathways, at a higher level than did mice. In addition, several DNA repair pathways in humans and naked mole-rats were up-regulated compared with mice. These findings suggest that increased DNA repair facilitates greater longevity, and also are consistent with the DNA damage theory of aging. [53]

Size

Reproducing females become the dominant female, usually by founding new colonies, fighting for the dominant position, or taking over once the reproducing female dies. These reproducing females tend to have longer bodies than that of their non-reproducing counterparts of the same skull width. The measurements of females before they became reproductive and after show significant increases in body size. It is believed that this trait does not occur due to pre-existing morphological differences but to the actual attainment of the dominant female position. [54] As with the reproductive females, the reproductive males also appear to be larger than their non-reproducing counterparts but the difference is smaller than in females. These males also have visible outlines of the testes through the skin of their abdomens. Unlike the females, there are usually multiple reproducing males. [55]

Chronobiology

The naked mole-rat's subterranean habitat imposes constraints on its circadian rhythm. [56] Living in constant darkness, most individuals possess a free-running activity pattern and are active both day and night, sleeping for short periods several times in between. [56] However, colonies do not exhibit synchronized cicadian sleep-wake cycles. [57]

Ecology and behavior

Distribution and habitat

The naked mole-rat is native to the drier parts of the tropical grasslands of East Africa, predominantly southern Ethiopia, Kenya, and Somalia. [1] [58]

Roles

Model of naked mole-rat soldiers, workers, and queen, a social structure similar to the castes of the eusocial insects Model of naked mole-rat soldiers, workers, and queen.jpg
Model of naked mole-rat soldiers, workers, and queen, a social structure similar to the castes of the eusocial insects

The naked mole-rat was the first mammal found to be eusocial. The Damaraland mole-rat (Fukomys damarensis) is the only other eusocial mammal currently known.

The social structure of naked mole-rats is similar to that of ants, termites, and some bees and wasps. [58] [59] [60] Only one female (the queen) and one to three males reproduce, while the rest of the members of the colony function as workers. [61] The queen and breeding males are able to breed at one year of age. Workers are sociologically but not physiologically sterile. [60] Smaller workers focus on gathering food and maintaining the nest, while larger workers are the tunnelers, volcanoers, and the most reactive to threats. [58] The non-reproducing females appear to be reproductively suppressed, meaning the ovaries do not fully mature, and do not have the same levels of certain hormones as the reproducing females. [58] By contrast, there is little difference of hormone concentration between reproducing and non-reproducing males. In experiments where the reproductive female was removed or died, one of the non-reproducing females would take over and become sexually active. Non-reproducing members of the colony cooperate to care for the pups produced by the queen (usually their mother or sister). Workers keep the pups from straying out of the nest, groom the pups, and snuggle to keep them warm, extend tunnels in search of food, bring food to the nest, and defend pups from attacks by predators and foreign colonies. [55] [58]

Queen and gestation

The relationships between the queen and the breeding males may last for many years; other females are temporarily sterile. Queens live from 13 to 18 years, and are extremely hostile to other females that attempt to exert physical dominance, or that produce hormones associated with becoming queens. When the queen dies, another female takes her place, often after a violent struggle with her competitors. [58] Once established, the new queen's body expands the space between the vertebrae in her backbone to become longer and ready to bear pups. [62]

In the wild, naked mole-rats usually breed once a year, if the litter survives. In captivity, they breed all year long and can produce a litter every 80 days. [58] [63] Gestation lasts about 70 days. Litter size is typically 3 to 12 pups; the average litter size is 11-12 [58] [64] [65] The young are born blind and weigh about 2 grams (0.07 oz). The queen nurses them for the first month, after which the other members of the colony feed them fecal pap until they are old enough to eat solid food.

In most female mammals the average litter size is about half the number of mammae. Presumably this enables females to successfully nurse litters even if some mammae fail to produce milk. Naked mole-rats break this "one-half rule" – field caught and lab born litters averaged 11 to 12 pups, and numbers of mammae on wild and captive females were similarly 11 to 12. Maximum litter sizes were 28 in the field and 27 in captivity, whereas the maximum number of mammae was 15. Breeding female naked mole-rats can bear and successfully rear litters that are far more numerous than their mammae because young take turns nursing from the same mammary and breeding females and pups are fed and protected by colony mates, enabling queens to concentrate their reproductive efforts on gestation and lactation. [64]

Workers

The queen is the most active member of a colony, and she induces workers to increase their activities by repeatedly shoving them. [58] [66] Smaller workers focus on acquiring food and maintaining tunnels, while the larger workers react strongly to disturbances. [58] [67] As in honey bees, the workers are divided along a continuum of different worker-caste behaviors instead of being in discrete groups. Larger workers function primarily as tunnellers, expanding the large network of tunnels within the burrow system, volcanoers, ejecting earth excavated during tunneling onto the ground surface, and assoldiers, protecting the group from outside predators. Smaller workers perform colony maintenance tasks such as foraging, nest building, and pup care. [58] [68] Workers that find new food sources (tubers) in their vast subterranean burrow systems give a special vocalization on their way back to the nest and wave the food around once they get there. Recruits find the new site by following an odour trail left by the initial scout -- a behavior somewhat analogous to trail deposition and following by ants and termites. [69]

Dispersers

Inbreeding is common among naked mole-rats within a colony [70] This results in colony members being extremely closely related, which in turn favors nepotism among non-breeders toward siblings. However,prolonged inbreeding is usually associated with lower fitness. [71] Interestingly, the discovery of male and female dispersers has revealed that there is a mechanism of inter-colony outbreeding. [72] Dispersers are morphologically, physiologically and behaviorally distinct from colony members and actively seek to leave their burrow when an escape opportunity presents itself. [73] These individuals are equipped with generous fat reserves for their journey. [73] Though they possess high levels of luteinizing hormone, dispersers are only interested in mating with individuals from foreign colonies rather than their own colony's queen. [73] They also show little interest in working cooperatively with colony members in their natal burrow. [73] Hence, disperser morphs are well-prepared to promote the establishment of new, initially outbred colonies, before cycles of inbreeding resume.

Colonies

Colonies average 75-80 individuals, but may contain more than 300, and their tunnel systems can stretch 3 to 5 kilometres (2–3 mi) in cumulative length. [58] [74]

Laboratory colonies are xenophobic, and will attack and kill invaders from different colonies. [58] Likewise, wild colonies sometimes expand their territories by invading neighboring colonies. Invaders may kidnap small pups and incorporate them into their own colony's workforce, an intriguing convergence with the behavior of slave-making ants. [75]

Female mate choice

In lab experiments, reproductively active female naked mole rats tended to associate with unfamiliar males (usually non-kin) when given a choice, whereas reproductively inactive females did not discriminate. [76] The preference of queens for unfamiliar males likely is an adaptation to reduce inbreeding; however, within established colonies queens rarely have opportunities to express such preferences. Evolutionarily, outbreeding may be preferred because it reduces the likelihood of expressing deleterious recessive alleles, [77] whereas inbreeding results in closer genetic relationships among naked mole-rat families, favoring self-sacrificial and nepotistic behaviors. [70]

Diet

A captive naked mole-rat eating Naked Mole Rat Eating.jpg
A captive naked mole-rat eating

Naked mole-rats feed primarily on very large tubers (weighing as much as a thousand times the body weight of a typical mole-rat) that they find deep underground through their mining operations. A single tuber can provide a colony with a long-term source of food—lasting for months, or even years, as they eat the inside but leave the outside, allowing the tuber to regenerate. [58] Symbiotic bacteria in the mole-rats' intestines ferment the fibres, allowing otherwise indigestible cellulose to be turned into volatile fatty acids. [78]

Naked mole-rats sometimes also eat their own feces. This behavior not only nourishes pups post-weaning but also is part of their eusocial behavior: a mechanism of sharing and assessing hormones from the queen. [79]

Predators

Naked mole rats are primarily preyed upon by snakes—especially the Rufous beaked snake and Kenyan sand boa—as well as honey badgers and various raptors. They are at their most vulnerable when "volcanoing" (ejecting soil to the surface). [58] [80]

Conservation status

Naked mole-rats are not threatened. They are widespread, numerous and, being subterranean, essentially unnoticeable in the drier regions of East Africa (except for their small "volcanoes" of ejected earth). [81]

The Photo Ark

A naked mole-rat living at the Lincoln Children's Zoo was the first animal to be photographed for the National Geographic project, The Photo Ark , which has the goal of photographing all species living in zoos and wildlife sanctuaries around the globe in order to inspire action to save wildlife. [82]

References

  1. 1 2 3 4 Jarvis, Jennifer U. M.; Sherman, Paul W. (December 2002). "Heterocephalus glaber". Mammalian Species. 2002 (706): 1-9. doi:10.1644/1545-1410(2002)706<0001:HG>2.0.CO;2.
  2. Maree, S. & Faulkes, C. (2016). Heterocephalus glaber. The IUCN Red List of Threatened Species 2016 (errata version published in 2017). doi:10.2305/IUCN.UK.2016-3.RLTS.T9987A22184136.en
  3. Landry SO (1957). "The interrelationships of the New and Old World hystricomorph rodents". University of California Publications in Zoology. 56: 1–118.
  4. 1 2 Patterson BD, Upham NS (November 2014). "A newly recognized family from the Horn of Africa, the Heterocephalidae (Rodentia: Ctenohystrica)". Zoological Journal of the Linnean Society. 172 (4): 942–963. doi: 10.1111/zoj.12201 .
  5. 1 2 Rüppell E (1845) [1842]. "Säugethiere aus der Ordnung der Nager, beobachtet im nordöstlichen Africa". Museum Senckenbergianum: Abhandlungen aus dem Gebiete der Beschreibenden Naturgeschichte. 3: 99–101.
  6. Kingdon J (1 July 1984). East African Mammals: An Atlas of Evolution in Africa, Volume 2, Part B: Hares and Rodents. University of Chicago Press. p. 489. ISBN   978-0-226-43720-0.
  7. 1 2 Buffenstein, Rochelle; Park, Thomas; Hanes, Martha; Artwohl, James E. (2012). "Naked Mole Rat". The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Elsevier. pp. 1055–1074. doi:10.1016/b978-0-12-380920-9.00045-6. ISBN   9780123809209. S2CID   80673862.
  8. Welsh J (2011-10-12). "Naked Mole Rat Genome May Hold Key to Long Life". Human Health & Longevity. LiveScience. Retrieved 2013-03-23.
  9. Sherman, Paul W.; Lacey, Eileen A.; Reeve, Hudson K.; Keller, Laurent (Spring 1995). "The eusociality continuum". Behavioral Ecology. 6 (1): 102-108. doi:10.1093/beheco/6.1.102.
  10. O'Riain MJ, Faulkes CG (2008). "African Mole-Rats: Eusociality, Relatedness and Ecological Constraints". In Korb J, Heinze J (eds.). Ecology of Social Evolution. Springer. pp. 207–223. doi:10.1007/978-3-540-75957-7_10. ISBN   978-3-540-75956-0.
  11. Burland TM, Bennett NC, Jarvis JU, Faulkes CG (May 2002). "Eusociality in African mole-rats: new insights from patterns of genetic relatedness in the Damaraland mole-rat (Cryptomys damarensis)". Proceedings. Biological Sciences. 269 (1495): 1025–30. doi:10.1098/rspb.2002.1978. PMC   1690998 . PMID   12028759.
  12. Kingdon J (2015). The Kingdon Field Guide to African Mammals: Second Edition. Princeton, N.J.: Princeton University Press. p. 224. ISBN   978-1472925312.
  13. Wilson DE, Lacher TE, Mittermeier RA (2016). Handbook of the Mammals of the World Volume 6: Lagomorphs and Rodents. Barcelona: Lynx Edicions. p. 312. ISBN   978-8494189234.
  14. "Naked Mole-Rat". Meet Our Animals. Smithsonian National Zoo Park. Archived from the original on 2015-04-26.
  15. Maina, J.N.; Maloiy, G.M.O.; Makanya, A.N. (September 1992). "Morphology and morphometry of the lungs of two East African mole rats, Tachyoryctes splendens and Heterocephalus glaber (Mammalia, Rodentia)". Zoomorphology . 112 (3): 167–179. doi:10.1007/BF01633107. S2CID   23738702.
  16. 1 2 3 Park TJ, Reznick J, Peterson BL, Blass G, Omerbašić D, Bennett NC, Kuich PH, Zasada C, Browe BM, Hamann W, Applegate DT, Radke MH, Kosten T, Lutermann H, Gavaghan V, Eigenbrod O, Bégay V, Amoroso VG, Govind V, Minshall RD, Smith ES, Larson J, Gotthardt M, Kempa S, Lewin GR (April 2017). "Fructose-driven glycolysis supports anoxia resistance in the naked mole-rat". Science. 356 (6335): 307–311. Bibcode:2017Sci...356..307P. doi: 10.1126/science.aab3896 . hdl: 2263/60326 . PMID   28428423.
  17. 1 2 Guarino, Ben (23 April 2017). "Naked mole-rats are now even weirder: Without oxygen, they live like plants". Washington Post. ISSN   0190-8286 . Retrieved 2023-02-07.
  18. Buffenstein, Rochelle (1 November 2015). "The Naked Mole-Rat: A New Long-Living Model for Human Aging Research". The Journals of Gerontology: Series A . 60 (11): 1369–1377. doi: 10.1093/gerona/60.11.1369 . PMID   16339321.
  19. Storz JF, McClelland GB (April 2017). "Rewiring metabolism under oxygen deprivation". Science. 356 (6335): 248–249. Bibcode:2017Sci...356..248S. doi:10.1126/science.aan1505. PMC   6661067 . PMID   28428384.
  20. Daly TJ, Williams LA, Buffenstein R (April 1997). "Catecholaminergic innervation of interscapular brown adipose tissue in the naked mole-rat (Heterocephalus glaber)". Journal of Anatomy. 190 ( Pt 3) (3): 321–6. doi:10.1046/j.1469-7580.1997.19030321.x. PMC   1467613 . PMID   9147219.
  21. Park TJ, Lu Y, Jüttner R, Smith ES, Hu J, Brand A, Wetzel C, Milenkovic N, Erdmann B, Heppenstall PA, Laurito CE, Wilson SP, Lewin GR (January 2008). "Selective inflammatory pain insensitivity in the African naked mole-rat (Heterocephalus glaber)". PLOS Biology. 6 (1): e13. doi: 10.1371/journal.pbio.0060013 . PMC   2214810 . PMID   18232734.
  22. Smith ES, Blass GR, Lewin GR, Park TJ (May 2010). "Absence of histamine-induced itch in the African naked mole-rat and "rescue" by Substance P". Molecular Pain. 6 (1): 1744–8069–6–29. doi: 10.1186/1744-8069-6-29 . PMC   2886013 . PMID   20497578.
  23. 1 2 Delaney MA, Ward JM, Walsh TF, Chinnadurai SK, Kerns K, Kinsel MJ, Treuting PM (May 2016). "Initial Case Reports of Cancer in Naked Mole-rats (Heterocephalus glaber)". Veterinary Pathology. 53 (3): 691–6. doi: 10.1177/0300985816630796 . PMID   26846576.
  24. Seluanov A, Hine C, Azpurua J, Feigenson M, Bozzella M, Mao Z, Catania KC, Gorbunova V (November 2009). "Hypersensitivity to contact inhibition provides a clue to cancer resistance of naked mole-rat". Proceedings of the National Academy of Sciences of the United States of America. 106 (46): 19352–7. Bibcode:2009PNAS..10619352S. doi: 10.1073/pnas.0905252106 . PMC   2780760 . PMID   19858485.
  25. Zimmer C (19 June 2013). "A Homely Rodent May Hold Cancer-Fighting Clues". New York Times . Retrieved 20 June 2013.
  26. Callaway, Ewen (19 June 2013). "Simple molecule prevents mole rats from getting cancer". Nature. doi:10.1038/nature.2013.13236. S2CID   88241415.
  27. Briggs H (19 June 2013). "Naked mole-rat gives cancer clues". BBC News. Retrieved 21 June 2013.
  28. Tian X, Azpurua J, Hine C, Vaidya A, Myakishev-Rempel M, Ablaeva J, Mao Z, Nevo E, Gorbunova V, Seluanov A (July 2013). "High-molecular-mass hyaluronan mediates the cancer resistance of the naked mole rat". Nature. 499 (7458): 346–9. Bibcode:2013Natur.499..346T. doi:10.1038/nature12234. PMC   3720720 . PMID   23783513.
  29. Holmes, Bob (4 May 2021). "Genetic tricks of the longest-lived animals". Knowable Magazine. doi: 10.1146/knowable-050421-5 . S2CID   235543595 . Retrieved 25 March 2022.
  30. Azpurua J, Ke Z, Chen IX, Zhang Q, Ermolenko DN, Zhang ZD, Gorbunova V, Seluanov A (October 2013). "Naked mole-rat has increased translational fidelity compared with the mouse, as well as a unique 28S ribosomal RNA cleavage". Proceedings of the National Academy of Sciences of the United States of America. 110 (43): 17350–5. Bibcode:2013PNAS..11017350A. doi: 10.1073/pnas.1313473110 . PMC   3808608 . PMID   24082110.
  31. "Breakthrough of the year 2013. Notable developments". Science. 342 (6165): 1435–41. December 2013. doi: 10.1126/science.342.6165.1444 . PMID   24357296.
  32. St Fleur N (February 19, 2016). "Two Naked Mole Rats, Seemingly Immune to Cancer, Got Cancer". New York Times . Retrieved February 20, 2016.
  33. Grens K (2016). "Cancer detected in naked mole rats". The Scientist. Retrieved February 15, 2016.
  34. Welsh JS, Traum TL (November 2016). "Regarding Mole Rats and Cancer". Veterinary Pathology. 53 (6): 1264–1265. doi: 10.1177/0300985816646434 . PMID   27733703.
  35. Cormier, Zoe (5 November 2012). "Blind mole rats may hold key to cancer". Nature. doi:10.1038/nature.2012.11741. S2CID   101691159.
  36. Zhang, Zhihui; Tian, Xiao; Lu, J. Yuyang; Boit, Kathryn; Ablaeva, Julia; Zakusilo, Frances Tolibzoda; Emmrich, Stephan; Firsanov, Denis; Rydkina, Elena; Biashad, Seyed Ali; Lu, Quan; Tyshkovskiy, Alexander; Gladyshev, Vadim N.; Horvath, Steve; Seluanov, Andrei (2023-08-23). "Increased hyaluronan by naked mole-rat Has2 improves healthspan in mice". Nature. 621 (7977): 196–205. Bibcode:2023Natur.621..196Z. doi:10.1038/s41586-023-06463-0. ISSN   0028-0836. PMC   10666664 . PMID   37612507. S2CID   261100218.
  37. Valich, Lindsey (2023-08-23). "Longevity gene from naked mole rats extends lifespan of mice". News Center. Retrieved 2023-08-28.
  38. Sherman, Paul W.; Jarvis, Jennifer U.M. (November 2002). "Extraordinary life spans of naked mole-rats (Heterocephalus glaber)". Journal of Zoology. 253 (3): 307-311. doi:10.1017/S0952836902001437.
  39. Buffenstein, Rochelle; Craft, Wendy (2021). "The Idiosyncratic Physiological Traits of the Naked Mole-Rat; a Resilient Animal Model of Aging, Longevity, and Healthspan". The Extraordinary Biology of the Naked Mole-Rat. Advances in Experimental Medicine and Biology. Vol. 1319. Cham: Springer International Publishing. p. 246. doi:10.1007/978-3-030-65943-1_8. ISBN   978-3-030-65942-4. ISSN   0065-2598. PMID   34424518. S2CID   237269233.
  40. 1 2 Ruby, J Graham; Smith, Megan; Buffenstein, Rochelle (January 24, 2018). "Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age". eLife. 7. eLife Sciences Publications, Ltd: e31157. doi: 10.7554/elife.31157 . ISSN   2050-084X. PMC   5783610 . PMID   29364116.
  41. Buffenstein R (May 2008). "Negligible senescence in the longest living rodent, the naked mole-rat: insights from a successfully aging species". Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology. 178 (4): 439–45. doi:10.1007/s00360-007-0237-5. PMID   18180931. S2CID   13598294.
  42. Csiszar A, Labinskyy N, Orosz Z, Xiangmin Z, Buffenstein R, Ungvari Z (August 2007). "Vascular aging in the longest-living rodent, the naked mole rat". American Journal of Physiology. Heart and Circulatory Physiology. 293 (2): H919–27. doi:10.1152/ajpheart.01287.2006. PMID   17468332. S2CID   19584646.
  43. Horvath, Steve; Haghani, Amin; Macoretta, Nicholas; Ablaeva, Julia; Zoller, Joseph A.; et al. (2021-12-23). "DNA methylation clocks tick in naked mole rats but queens age more slowly than nonbreeders". Nature Aging. 2 (1): 46–59. doi:10.1038/s43587-021-00152-1. PMC   8975251 . PMID   35368774.
  44. "Ugly Duckling Mole Rats Might Hold Key To Longevity". Sciencedaily.com. 2007-10-16. Retrieved 2009-03-11.
  45. Pérez VI, Buffenstein R, Masamsetti V, Leonard S, Salmon AB, Mele J, Andziak B, Yang T, Edrey Y, Friguet B, Ward W, Richardson A, Chaudhuri A (March 2009). "Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat". Proceedings of the National Academy of Sciences of the United States of America. 106 (9): 3059–64. Bibcode:2009PNAS..106.3059P. doi: 10.1073/pnas.0809620106 . PMC   2651236 . PMID   19223593.
  46. "Proposal to Sequence an Organism of Unique Interest for Research on Aging: Heterocephalus glaber, the Naked Mole-Rat". Genomics.senescence.info. Retrieved 2009-04-30.
  47. "Naked Mole-Rat Database". Naked Mole-Rat Database 2011. Retrieved 5 July 2011.
  48. "Naked Mole-Rat Genome Resource". Naked Mole-Rat Genome Resource 2011. Retrieved 5 July 2011.
  49. Kim EB, Fang X, Fushan AA, Huang Z, Lobanov AV, Han L, Marino SM, Sun X, Turanov AA, Yang P, Yim SH, Zhao X, Kasaikina MV, Stoletzki N, Peng C, Polak P, Xiong Z, Kiezun A, Zhu Y, Chen Y, Kryukov GV, Zhang Q, Peshkin L, Yang L, Bronson RT, Buffenstein R, Wang B, Han C, Li Q, Chen L, Zhao W, Sunyaev SR, Park TJ, Zhang G, Wang J, Gladyshev VN (October 2011). "Genome sequencing reveals insights into physiology and longevity of the naked mole rat". Nature. 479 (7372): 223–7. Bibcode:2011Natur.479..223K. doi:10.1038/nature10533. PMC   3319411 . PMID   21993625.
  50. Keane M, Craig T, Alföldi J, Berlin AM, Johnson J, Seluanov A, Gorbunova V, Di Palma F, Lindblad-Toh K, Church GM, de Magalhães JP (December 2014). "The Naked Mole Rat Genome Resource: facilitating analyses of cancer and longevity-related adaptations". Bioinformatics. 30 (24): 3558–60. doi:10.1093/bioinformatics/btu579. PMC   4253829 . PMID   25172923.
  51. Yu C, Li Y, Holmes A, Szafranski K, Faulkes CG, Coen CW, Buffenstein R, Platzer M, de Magalhães JP, Church GM (2011). "RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice". PLOS ONE. 6 (11): e26729. Bibcode:2011PLoSO...626729Y. doi: 10.1371/journal.pone.0026729 . PMC   3207814 . PMID   22073188.
  52. MacRae SL, Croken MM, Calder RB, Aliper A, Milholland B, White RR, Zhavoronkov A, Gladyshev VN, Seluanov A, Gorbunova V, Zhang ZD, Vijg J (December 2015). "DNA repair in species with extreme lifespan differences". Aging. 7 (12): 1171–84. doi:10.18632/aging.100866. PMC   4712340 . PMID   26729707.
  53. Bernstein H, Payne CM, Bernstein C, Garewal H, Dvorak K (2008). "Cancer and aging as consequences of un-repaired DNA damage Archived 2014-10-25 at the Wayback Machine ". In: New Research on DNA Damages (Editors: Honoka Kimura and Aoi Suzuki) Nova Science Publishers, Inc., New York, Chapter 1, pp. 1-47. open access, but read only ISBN   1604565810 ISBN   978-1604565812
  54. Young AJ, Bennett NC (November 2010). "Morphological divergence of breeders and helpers in wild Damaraland mole-rat societies". Evolution; International Journal of Organic Evolution. 64 (11): 3190–7. doi: 10.1111/j.1558-5646.2010.01066.x . PMID   20561049. S2CID   28456413.
  55. 1 2 Jarvis JU, Bennett NC (1993). "Eusociality has evolved independently in two genera of bathyergid mole-rats — but occurs in no other subterranean mammal". Behavioral Ecology and Sociobiology. 33 (4): 253–260. doi:10.1007/bf02027122. S2CID   37118289.
  56. 1 2 Park, T.J.; Lewin, G.R.; Buffenstein, R. (2010). "Naked Mole Rats: Their Extraordinary Sensory World". Encyclopedia of Animal Behavior. pp. 505–512. doi:10.1016/b978-0-08-045337-8.00152-2. ISBN   978-0-08-045337-8.
  57. Davis-Walton, Jennifer; Sherman, Paul W. (1994). "Sleep arrhythmia in the eusocial naked mole-rat". Naturwissenschaften. 81 (6): 272-275. doi:10.1007/BF01131581.
  58. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Sherman PW, Jarvis JU, Alexander RD (1991). The Biology of the Naked Mole-rat. Princeton, N.J.: Princeton University Press. ISBN   978-0691024486.
  59. Jarvis, Jennifer (May 1981). "Eusociality in a Mammal: Cooperative Breeding in Naked Mole-Rat Colonies". Science. 212 (4494): 571–573. Bibcode:1981Sci...212..571J. doi:10.1126/science.7209555. JSTOR   1686202. PMID   7209555. S2CID   880054.
  60. 1 2 Marshall M (17 October 2014). "Eight ugly animals we should save anyway". BBC Earth. Retrieved 3 January 2015.
  61. Sherman, Paul W.; Jarvis, Jennifer U. M.; Braude, Stanton H. (August 1992). "Naked Mole Rats". Scientific American. 267 (2): 72–79. Bibcode:1992SciAm.267b..72S. doi:10.1038/scientificamerican0892-72. JSTOR   24939178.
  62. "San Diego's Animals. Mammals: Naked Mole-rat". Sandiegozoo.org. Retrieved 2013-03-23.
  63. Piper R (2007). Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals . Westport, Conn: Greenwood Press. ISBN   978-0-313-33922-6.
  64. 1 2 Sherman, Paul W.; Braude, Stanton; Jarvis, Jennifer U.M. (August 1999). "Litter sizes and mammary numbers of naked mole-rats: Breaking the one-half rule". Journal of Mammalogy. 80 (3): 720-733. doi:10.2307/1383241.
  65. Segelken, Roger (9 August 1999). "Counting mole-rat mammaries and hungry pups, biologists explain why naked rodents break the rules". news.cornell.edu. Archived from the original on 18 January 2000.
  66. Reeve, Hudson K. (1992). "Queen activation of lazy workers in colonies of the eusocial naked mole-rat". Nature. 358 (6382): 147-149. doi:10.1038/358147a0.
  67. Morelle R (May 5, 2010). "Meet the 'sabre-toothed sausage'". BBC News.
  68. Jarvis JU (1981). "Eusociality in a Mammal: Cooperative Breeding in Naked Mole-Rat Colonies". Science. 212 (4494): 571–573. Bibcode:1981Sci...212..571J. doi:10.1126/science.7209555. JSTOR   1686202. PMID   7209555. S2CID   880054.
  69. Judd, Timothy M.; Sherman, Paul W. (November 1996). "Naked mole-rats recruit colony mates to food sources". Animal Behaviour. 52 (5): 957-969. doi: 10.1006/anbe.1996.0244 .
  70. 1 2 Reeve, Hudson K.; Westneat, David F.; Noon, W. A.; Sherman, Paul W.; Aquadro, Charles F. (April 1990). "DNA "fingerprinting" reveals high levels of inbreeding in colonies of the eusocial naked mole-rat". Proceedings of the National Academy of Sciences. 87 (7). National Library of Medicine. doi:10.1073/pnas.87.7.2496. PMC   53716 .
  71. Bengtsson, B.O. (August 1978). "Avoiding inbreeding: at what cost?". Journal of Theoretical Biology. 73 (3): 439–444. Bibcode:1978JThBi..73..439B. doi:10.1016/0022-5193(78)90151-0. PMID   692150.
  72. Braude, Stanton (January 2000). "Dispersal and new colony formation in wild naked mole-rats:evidence against inbreeding as the system of mating". Behavioral Ecology. 11 (1): 7–12. doi:10.1093/beheco/11.1.7.
  73. 1 2 3 4 Bromham, Lindell; Harvey, Paul H (September 1996). "Behavioural ecology: Naked mole-rats on the move". Current Biology. 6 (9): 1082–1083. Bibcode:1996CBio....6.1082B. doi: 10.1016/S0960-9822(02)70671-4 . PMID   8805352.
  74. Dawkins R (2006) [1976]. The Selfish Gene (30th anniversary ed.). Oxford University Press. ISBN   978-0-19-286092-7.
  75. Braude, Stan; Hess, J.; Ingram, C. (September 2020). "Inter-colony invasion between wild naked mole-rat colonies". Journal of Zoology. 313 (1): 37-42. doi:10.1111/jzo.12834.
  76. Clarke FM, Faulkes CG (October 1999). "Kin discrimination and female mate choice in the naked mole-rat Heterocephalus glaber". Proceedings. Biological Sciences. 266 (1432): 1995–2002. doi:10.1098/rspb.1999.0877. PMC   1690316 . PMID   10584337.
  77. Charlesworth D, Willis JH (November 2009). "The genetics of inbreeding depression". Nature Reviews. Genetics. 10 (11): 783–96. doi:10.1038/nrg2664. PMID   19834483. S2CID   771357.
  78. Debebe, Tewodros; Biagi, Elena; Soverini, Matteo; Holtze, Susanne; Hildebrandt, Thomas Bernd; Birkemeyer, Claudia; Wyohannis, Dereje; Lemma, Alemayehu; Brigidi, Patrizia; Savkovic, Vulk; König, Brigitte; Candela, Marco; Birkenmeier, Gerd (29 August 2017). "Unraveling the gut microbiome of the long-lived naked mole-rat". Nature. 7 (1): 9590. Bibcode:2017NatSR...7.9590D. doi:10.1038/s41598-017-10287-0. PMC   5575099 . PMID   28852094.
  79. Reardon, Sara (20 October 2015). "Poo turns naked mole rats into better babysitters". Nature. doi:10.1038/nature.2015.18606. S2CID   181362727.
  80. Mammals of Africa, Volume III. Bloomsbury Natural History. February 2013. p. 670. ISBN   9781408122570.
  81. International Union for Conservation of Nature Red List: Heterocephalus Glaber listed as "least concern".
  82. Biga, Leo Adam (April 10, 2018). "Nature photographer Joel Sartore taking cue from Noah with his National Geographic Photo Ark". Thereader.com. The Reader. Archived from the original on June 16, 2018. Retrieved June 16, 2018.

Further reading