Germ-Soma Differentiation

Last updated

Germ-Soma Differentiation is the process by which organisms develop distinct germline and somatic cells. The development of cell differentiation has been one of the critical aspects of the evolution of multicellularity and sexual reproduction in organisms. Multicellularity has evolved upwards of 25 times, [1] and due to this there is great possibility that multiple factors have shaped the differentiation of cells. There are three general types of cells: germ cells, somatic cells, and stem cells. Germ cells lead to the production of gametes, while somatic cells perform all other functions within the body. Within the broad category of somatic cells, there is further specialization as cells become specified to certain tissues and functions. In addition, stem cell are undifferentiated cells which can develop into a specialized cell and are the earliest type of cell in a cell lineage. [2] Due to the differentiation in function, somatic cells are found ony in multicellular organisms, as in unicellular ones the purposes of somatic and germ cells are consolidated in one cell.

Contents

All organisms with germ-soma differentiation are eukaryotic, and represent an added level of specialization to multicellular organisms. Pure germ-soma differentiation has developed in a select number of eukaryotes (called Weismannists), included in this category are vertebrates and arthropods- however land plants, green algae, red algae, brown algae, and fungi have partial differentiation. [3] While a significant portion of organisms with germ-soma differentiation are asexual, this distinction has been imperative in the development of sexual reproduction; the specialization of certain cells into germ cells is fundamental for meiosis and recombination.

Weismann barrier

The strict division between somatic and germ cells is called the Weismann barrier, in which genetic information passed onto offspring is found only in germ cells. This occurs only in select organisms, however some without a Weismann barrier do present germ-soma differentiation. These organisms include land plants, many algaes, invertebrates, and fungi whose germ cells are derived from prior somatic cells as opposed to stem cells. The Weismann barrier is essential to the concept of an immortal germline, which passes down genetic information through designated germ cells.

Organisms with germ-soma differentiation but no Weismann barrier often reproduce through somatic embryogenesis.

Benefits and Detriments of Differentiation

There is no single widely accepted theory on the origins of somatic-germline differentiation, however of those that do exist many are based on the evolutionary advantage of differentiated multicellularity which has allowed it to survive. These theories include the development of colonial organization structures in which the division of labor between cells allowed for improvements in fitness.

The division of labor within multicellular organisms can offer significant advantages over unicellular counterparts. Division can allow organisms to become larger, or interact with the environments (and thus fill different niches) that increase fitness. In addition to internal benefits, there is evidence that these also improve defenses against predation. [4] On the other hand, multicellularity comes with increased energy use devoted to maintaining homeostasis instead of to reproduction.

Dirty Work Hypothesis

One major theory as to the proliferation of organisms with cell differentiation is the dirty work hypothesis. This hypothesis posits that when an organism has differentiated cells, somatic cells are able to devote energy solely to maintaining homeostasis instead of reproduction while germ cells do the opposite. One reason proposed for the relative success of the "dirty work" system of organization is that it helps manage the detrimental effects of metabolic activity, and allow for more efficient energy distribution throughout an organism. [5] The other major reason proposed is that it prevents metabolic activity within the cell from damaging genetic material. Said activity in mitochondria and chloroplasts creates mutagenic byproducts, so in organisms with differentiation where germ cells do not engage in metabolic activity the germline is not impacted. [5] [6]

Uncertainty

Due to the nature of research around the origin of life and multicellularity, it has been difficult to obtain a case study that is optimal for observing somatic-germline differentiation. One case that has been extensively studied is that of organisms in the Volvocacaeae family. Within volvocavea, there is much diversity in organizational structure, with some organisms being unicellular, colonial, or (arguably) multicellular. [7] Within volvocine algae three genes have been identified as crucial to the development of soma cells which regulate coding for asymmetric division of cells, preventing reproductive development of soma cells, and preventing the development of somatic characteristics in germ cells (such as those meant for mobility or metabolic activity [8] ).

Related Research Articles

<i>Volvox</i> Genus of algae

Volvox is a polyphyletic genus of chlorophyte green algae in the family Volvocaceae. It forms spherical colonies of up to 50,000 cells. They live in a variety of freshwater habitats, and were first reported by Antonie van Leeuwenhoek in 1700. Volvox diverged from unicellular ancestors approximately 200 million years ago.

August Weismann German evolutionary biologist (1834–1914)

Prof August Friedrich Leopold Weismann FRS (For), HonFRSE, LLD was a German evolutionary biologist. Ernst Mayr ranked him as the second most notable evolutionary theorist of the 19th century, after Charles Darwin. Weismann became the Director of the Zoological Institute and the first Professor of Zoology at Freiburg.

Cellular differentiation Process in which totipotent cells acquire specialized features

Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular organism as it changes from a simple zygote to a complex system of tissues and cell types. Differentiation continues in adulthood as adult stem cells divide and create fully differentiated daughter cells during tissue repair and during normal cell turnover. Some differentiation occurs in response to antigen exposure. Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence itself. Although metabolic composition does get altered quite dramatically where stem cells are characterized by abundant metabolites with highly unsaturated structures whose levels decrease upon differentiation. Thus, different cells can have very different physical characteristics despite having the same genome.

A somatic cell, or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell.

The term somatic - etymologically from the Ancient Greek words of "σωματικός" and σῶμα - is often used in biology to refer to the cells of the body in contrast to the reproductive (germline) cells, which usually give rise to the egg or sperm. These somatic cells are diploid, containing two copies of each chromosome, whereas germ cells are haploid, as they only contain one copy of each chromosome. Although under normal circumstances all somatic cells in an organism contain identical DNA, they develop a variety of tissue-specific characteristics. This process is called differentiation, through epigenetic and regulatory alterations. The grouping of similar cells and tissues creates the foundation for organs.

Unicellular organism Organism that consists of only one cell

A unicellular organism, also known as a single-celled organism, is an organism that consists of a single cell, unlike a multicellular organism that consists of multiple cells. Organisms fall into two general categories: prokaryotic organisms and eukaryotic organisms. All prokaryotes are unicellular and are classified into bacteria and archaea. Many eukaryotes are multicellular, but some are unicellular such as protozoa, unicellular algae, and unicellular fungi. Unicellular organisms are thought to be the oldest form of life, with early protocells possibly emerging 3.8–4.0 billion years ago.

Multicellular organism Organism that consists of more than one cell

A multicellular organism is an organism that consists of more than one cell, in contrast to a unicellular organism.

Biological life cycle Series of stages of an organism

In biology, a biological life cycle is a series of changes in form that an organism undergoes, returning to the starting state. "The concept is closely related to those of the life history, development and ontogeny, but differs from them in stressing renewal." Transitions of form may involve growth, asexual reproduction, or sexual reproduction.

Germ cell Gamete-producing cell

A germ cell is any biological cell that gives rise to the gametes of an organism that reproduces sexually. In many animals, the germ cells originate in the primitive streak and migrate via the gut of an embryo to the developing gonads. There, they undergo meiosis, followed by cellular differentiation into mature gametes, either eggs or sperm. Unlike animals, plants do not have germ cells designated in early development. Instead, germ cells can arise from somatic cells in the adult, such as the floral meristem of flowering plants.

Germline Population of a multicellular organisms cells that pass on their genetic material to the progeny

In biology and genetics, the germline is the population of a multicellular organism's cells that pass on their genetic material to the progeny (offspring). In other words, they are the cells that form the egg, sperm and the fertilised egg. They are usually differentiated to perform this function and segregated in a specific place away from other bodily cells.

Weismann barrier Distinction between germ cell lineages producing gametes and somatic cells

The Weismann barrier, proposed by August Weismann, is the strict distinction between the "immortal" germ cell lineages producing gametes and "disposable" somatic cells, in contrast to Charles Darwin's proposed pangenesis mechanism for inheritance. In more precise terminology, hereditary information moves only from germline cells to somatic cells. This does not refer to the central dogma of molecular biology, which states that no sequential information can travel from protein to DNA or RNA, but both hypotheses relate to a gene-centric view of life.

Germ plasm Biological concept

Germ plasm is a biological concept developed in the 19th century by the German biologist August Weismann. It states that heritable information is transmitted only by germ cells in the gonads, not by somatic cells. The related idea that information cannot pass from somatic cells to the germ line, contrary to Lamarckism, is called the Weismann barrier. To some extent this theory anticipated the development of modern genetics.

Gametogonium are stem cells for gametes located within the gonads. They originate from primordial germ cells, which have migrated to the gonads. Male gametogonia which are located within the testes during development and adulthood are called spermatogonium. Female gametogonia, known as oogonium, are found within the ovaries of the developing foetus and were thought to be depleted at or after birth. Spermatogonia and oogonia are classified as sexually differentiated germ cells.

Enquiry into the evolution of ageing, or aging, aims to explain why a detrimental process such as ageing would evolve, and why there is so much variability in the lifespans of organisms. The classical theories of evolution suggest that environmental factors, such as predation, accidents, disease, starvation, ensure that most organisms living in natural settings will not live until old age, and so there will be very little pressure to conserve genetic changes that increase longevity. Natural selection will instead strongly favor genes which ensure early maturation and rapid reproduction, and the selection for genetic traits which promote molecular and cellular self-maintenance will decline with age for most organisms.

<i>Gonium</i> Genus of algae

Gonium is a genus of colonial algae, a member of the order Chlamydomonadales. Typical colonies have 4 to 16 cells, all the same size, arranged in a flat plate, with no anterior-posterior differentiation. In a colony of 16 cells, four are in the center, and the other 12 are on the four sides, three each. A description by G.M. Smith :

Gonium Mueller 1773: Colonies of 4-8-16 cells arranged in a flat quadrangular plate and embedded in a common gelatinous matrix or connected by broad gelatinous strands. Cells ovoid to pyriform, with a single cup-shaped chloroplast containing one pyrenoid. Each cell with two cilia of equal length, contractile vacuoles at the base of the cilia, and an eyespot. Four- and eight-celled colonies with the cilia on the same side ; sixteen-celled colonies with the four central cells having their cilia on the same side and the twelve marginal cells with radially arranged cilia.

Asexual reproduction by simultaneous division of all cells in the colony to form autocolonies, or by a formation of 2-4 zoospores in each cell.

Sexual reproduction isogamous, by a fusion of biciliatezoogametes.

Outline of cell biology Overview of and topical guide to cell biology

The following outline is provided as an overview of and topical guide to cell biology:

<i>Volvox carteri</i> Species of alga

Volvox carteri is a species of colonial green algae in the order Volvocales. The V. carteri life cycle includes a sexual phase and an asexual phase. V. carteri forms small spherical colonies, or coenobia, of 2000–6000 Chlamydomonas-type somatic cells and 12–16 large, potentially immortal reproductive cells called gonidia. While vegetative, male and female colonies are indistinguishable; however, in the sexual phase, females produce 35-45 eggs and males produce up to 50 sperm packets with 64 or 128 sperm each.

Allorecognition

Allorecognition is the ability of an individual organism to distinguish its own tissues from those of another. It manifests itself in the recognition of antigens expressed on the surface of cells of non-self origin. Allorecognition has been described in nearly all multicellular phyla.

Oogonial stem cells (OSCs), also known as egg precursor cells or female germline cells, are diploid germline cells with stem cell characteristics: the ability to renew and differentiate into other cell types, different from their tissue of origin. Present in invertebrates and some lower vertebrate species, they have been extensively studied in Caenorhabditis elegans, Drosophila melanogaster. OSCs allow the production of new female reproductive cells (oocytes) by the process of oogenesis during an organism's reproductive life.

A somatic mutation is a change in the DNA sequence of a somatic cell of a multicellular organism with dedicated reproductive cells; that is, any mutation that occurs in a cell other than a gamete, germ cell, or gametocyte. Unlike germline mutations, which can be passed on to the descendants of an organism, somatic mutations are not usually transmitted to descendants. This distinction is blurred in plants, which lack a dedicated germline, and in those animals that can reproduce asexually through mechanisms such as budding, as in members of the cnidarian genus Hydra.

References

  1. Grosberg, Richard K.; Strathmann, Richard R. (2007). "The Evolution of Multicellularity: A Minor Major Transition?". Annual Review of Ecology, Evolution, and Systematics. 38: 621–654. doi:10.1146/annurev.ecolsys.36.102403.114735.
  2. Atala, Anthony; Lanza, Robert (2013). Handbook of Stem Cells. Academic Press. ISBN   9780123859433.
  3. Niklas, Karl J (Jan 2014). "The evolutionary-developmental origins of multicellularity". American Journal of Botany. 101 (1): 6–25. doi:10.3732/ajb.1300314. PMID   24363320.
  4. Bernardes, Joana P.; John, Uwe; Woltermann, Noemi; Valiadi, Martha; Hermann, Ruben J.; Becks, Lutz (2021-07-09). "The evolution of convex trade-offs enables the transition towards multicellularity". Nature Communications. 12 (1): 4222. Bibcode:2021NatCo..12.4222B. doi:10.1038/s41467-021-24503-z. ISSN   2041-1723. PMC   8270964 . PMID   34244514.
  5. 1 2 Chase, Jonathan M. (2014-05-13). "A Fool to Do Your Dirty Work?". PLOS Biology. 12 (5): e1001859. doi:10.1371/journal.pbio.1001859. ISSN   1544-9173. PMC   4019462 . PMID   24823481.
  6. Goldsby, Heather J.; Knoester, David B.; Ofria, Charles; Kerr, Benjamin (2014-05-13). Keller, Laurent (ed.). "The Evolutionary Origin of Somatic Cells under the Dirty Work Hypothesis". PLOS Biology. 12 (5): e1001858. doi:10.1371/journal.pbio.1001858. ISSN   1545-7885. PMC   4019463 . PMID   24823361.
  7. Gilbert, Scott F. (2000). "Multicellularity: The Evolution of Differentiation". Developmental Biology. 6th Edition.
  8. Hallmann, Armin (June 2011). "Evolution of reproductive development in the volvocine algae". Sexual Plant Reproduction. 24 (2): 97–112. doi:10.1007/s00497-010-0158-4. ISSN   0934-0882. PMC   3098969 . PMID   21174128.