Apolemia

Last updated

Apolemia
String jelly3a.jpg
Apolemia uvaria
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Cnidaria
Class: Hydrozoa
Order: Siphonophorae
Suborder: Physonectae
Family: Apolemiidae
Huxley, 1859
Genus: Apolemia
Eschscholtz, 1829 [1]
Species

See text

Synonyms
  • RamosiaStepanjants, 1967
  • TottoniaMargulis, 1976 [2]

Apolemia is a genus of siphonophores. It is the only genus in the monotypic family Apolemiidae. [2]

Contents

Despite appearing to be a single multicellular organism, they are actually a floating colony of polyps and medusoids, collectively known as zooids.

Discovery

The genus Apolemia, named by Baltic-German physician and naturalist Johann Friedrich von Eschscholtz, was first documented in 1815 with the discovery and description of Apolemia uvaria (the "string jellyfish"), by French naturalist Charles Alexandre Lesueur off the coast of Europe. [1] It was displaying a net-like feeding pattern in the pelagic zone, and was documented to have rows of nematocysts. Few species have been well-defined within the genus otherwise.

Feeding

Apolemia are carnivorous invertebrates, which have been documented to feed on small fish, crustaceans, copepods, other plankton, and even other siphonophores. They do so by extending long, curtain-like nematocyst rows into the water column, for prey to become paralyzed.

Body plan

Siphonophores, such as Apolemia, are generally classified into three major types: Physonectae, Cystonectae, and Calycophorae. Apolemia spp. have been classified as having a Physonectae body plan, containing a pneumatophore towards the surface of the colony, and a nectosome towards the base. Individual zooids orientated in either polyp or medusae forms, such as gastrozooids and nectophores (medusae). The orientation of these zooids differs to achieve optimal function within the colony, serving a role in locomotion, propulsion, feeding, and defense. Most Physonectae are described as jellyfish-shaped, though Apolemia proves to be an exception in this instance, aligned more laterally than rounded, such as conventional jellyfish.

Nematocysts

Predatory siphonophores such as Apolemia rely on nematocyst rows to inject toxins and incapacitate prey for the colony to feed. As the Apolemia grow, and chance of the colony splitting increases, movements are reduced and Apolemia abandon the hunting, motile lifestyle for a more sessile, ambush lifestyle, where the coils of threadlike tubes can be most efficiently extended to entrap and incapacitate prey. The newsworthy Apolemia found in 2020, measuring approximately 119 metres, was found coiled in a unique, spiraled shape, increasing the surface area covered in the pycnocline and increasing the potential of trapping prey.

Pneumatophore

Vertical displacement for the Apolemia is facilitated by the presence of a pneumatophore, a regulating air-float that allows the colony to displace itself both above and below the pycnocline depending on prey availability and ocean conditions. Expanding the air-float increases buoyancy in the water, producing a steep enough contrast for the entire colony to traverse higher in the water column; the inverse is also the case. In addition to assisting in prey location, pneumatophores are integral in the survival of the entire colony, because if water conditions became less optimal due to pH fluctuation, temperature variations or anoxic water zones, the colony is capable of evacuating out of the area.

Nectophore

Horizontal displacement for Apolemia is facilitated by the presence of nectophores. Apolemia utilize nectophores by producing jet-like propulsion by excreting water. Apolemia are colonial organisms and exhibit a high level of communication. Smaller zooids are concentrated at the front of the organisms and are responsible for minute movements such as turning. The larger zooids are located at the back and are responsible for the bulk of the forward momentum.

Species

The following species are classified within the genus Apolemia: [3]

Notable

In 2020 researchers working off the coast of Western Australia came across an Apolemia which had coiled itself into a spiral form. The outer "ring" was estimated to be 47 meters (154 feet) long, [4] with an estimated total length of 119 meters (390 feet). [5] This would make it longer than any other animal on the planet, if one includes colonial animals, although individuals of the lion's mane jellyfish (Cyanea capillata) are known to be nearly as large; the largest known specimen of the latter had tentacles as long as 37 m (121 ft) and was projected to have a tentacular spread of about 75 m (246 ft), making it one of the longest extant non-colonial animals. [6]

Related Research Articles

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria, is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, including jellyfish, hydroids, sea anemones, corals and some of the smallest marine parasites. Their distinguishing features are a decentralized nervous system distributed throughout a gelatinous body and the presence of cnidocytes or cnidoblasts, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living, jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick. Cnidarians are also some of the only animals that can reproduce both sexually and asexually.

<span class="mw-page-title-main">Portuguese man o' war</span> Marine invertebrate found in the Atlantic and Indian Oceans

The Portuguese man o' war, also known as the man-of-war or bluebottle, is a marine hydrozoan found in the Atlantic Ocean and the Indian Ocean. It is considered to be the same species as the Pacific man o' war or bluebottle, which is found mainly in the Pacific Ocean. The Portuguese man o' war is the only species in the genus Physalia, which in turn is the only genus in the family Physaliidae.

<span class="mw-page-title-main">Hydrozoa</span> Class of cnidarians

Hydrozoa is a taxonomic class of individually very small, predatory animals, some solitary and some colonial, most of which inhabit saline water. The colonies of the colonial species can be large, and in some cases the specialized individual animals cannot survive outside the colony. A few genera within this class live in freshwater habitats. Hydrozoans are related to jellyfish and corals and belong to the phylum Cnidaria.

<span class="mw-page-title-main">Siphonophorae</span> Order of colonial hydrozoans with differentiated zooids

Siphonophorae is an order within Hydrozoa, which is a class of marine organisms within the phylum Cnidaria. According to the World Register of Marine Species, the order contains 175 species described thus far.

<i>Physalia</i> Genus of hydrozoans

Physalia is a genus of the order Siphonophorae, colonies of four specialized polyps and medusoids that drift on the surface of the Atlantic, Indian and Pacific oceans. Although these organisms look like a single multicellular organism, each specimen is actually a colony of minute organisms called zooids that have to work together for survival. A gas-filled bladder resembling a blue bottle provides buoyancy, and long tentacles of venomous cnidocytes provide a means of capturing prey. A sail on the float, which may be left or right-handed, propels Physalia about the sea, often in groups. These siphonophores sometimes become stranded on beaches, where their toxic nematocysts can remain potent for weeks or months in moist conditions. Both species of this siphonophore resemble a jellyfish in appearance, with their gas-filled float and cluster of polyps beneath, which can hang up to 30 or 165 ft below the surface of the sea.

<i>Velella</i> Species of cnidarian

Velella is a monospecific genus of hydrozoa in the Porpitidae family. Its only known species is Velella velella, a cosmopolitan free-floating hydrozoan that lives on the surface of the open ocean. It is commonly known by the names sea raft, by-the-wind sailor, purple sail, little sail, or simply Velella.

<span class="mw-page-title-main">Medusozoa</span> Clade of marine invertebrates

Medusozoa is a clade in the phylum Cnidaria, and is often considered a subphylum. It includes the classes Hydrozoa, Scyphozoa, Staurozoa and Cubozoa, and possibly the parasitic Polypodiozoa. Medusozoans are distinguished by having a medusa stage in their often complex life cycle, a medusa typically being an umbrella-shaped body with stinging tentacles around the edge. With the exception of some Hydrozoa, all are called jellyfish in their free-swimming medusa phase.

<i>Turritopsis dohrnii</i> Species of small, biologically immortal jellyfish

Turritopsis dohrnii, also known as the immortal jellyfish, is a species of small, biologically immortal jellyfish found worldwide in temperate to tropic waters. It is one of the few known cases of animals capable of reverting completely to a sexually immature, colonial stage after having reached sexual maturity as a solitary individual. Others include the jellyfish Laodicea undulata and species of the genus Aurelia.

<i>Praya dubia</i> Species of hydrozoan

Praya dubia, the giant siphonophore, lives in the deep sea at 700 m (2,300 ft) to 1,000 m (3,300 ft) below sea level. It has been found off the coasts around the world, from Iceland in the North Atlantic to Chile in the South Pacific.

<i>Porpita porpita</i> Species of hydrozoan

Porpita porpita, or the blue button, is a marine organism consisting of a colony of hydroids found in the warmer, tropical and sub-tropical waters of the Pacific, Atlantic, and Indian oceans, as well as the Mediterranean Sea and eastern Arabian Sea. It was first identified by Carl Linnaeus in 1758, under the basionym Medusa porpita. In addition, it is one of the two genera under the suborder Chondrophora, which is a group of cnidarians that also includes Velella. The chondrophores are similar to the better-known siphonophores, which includes the Portuguese man o' war, or Physalia physalis. Although it is superficially similar to a jellyfish, each apparent individual is actually a colony of hydrozoan polyps. The taxonomic class, Hydrozoa, falls under the phylum Cnidaria, which includes anemones, corals, and jellyfish, which explains their similar appearances.

<i>Marrus orthocanna</i> Species of hydrozoan

Marrus orthocanna species of pelagic siphonophore, a colonial animal composed of a complex arrangement of zooids, some of which are polyps and some medusae. Swimming independently in the mid-ocean, it lives in the Arctic and other cold, deep waters. It is a colonial creature that is born from a single egg which is fertilized. Later on, a protozoan forms that eventually grows to form more duplicating members of the colony. It belongs to the order Siphonophorae and the genus Marrus, which also includes M. antarcticus, M. claudanielis, and M. orthocannoides.

<span class="mw-page-title-main">Aequoreidae</span> Family of hydrozoans

Aequoreidae is a family of hydrozoans, sometimes called the many-ribbed jellies or many-ribbed jellyfish. There are approximately 30 known species found in temperate and tropical marine coastal environments. Aequoreids include Aequorea victoria, the organism from which the green fluorescent protein gene was isolated.

<i>Apolemia uvaria</i> Siphonophore in the family Apolemiidae

Apolemia uvaria, commonly known as string jellyfish, barbed wire jellyfish, and long stringy stingy thingy, is a siphonophore in the family Apolemiidae.

<i>Porpita prunella</i> Species of hydrozoan

Porpita prunella is a marine species of hydrozoan organisms within the family Porpitidae. It consists of colonies of zooids. Very little is known about this species, as there have been no confirmed sightings since its discovery in 1801 and naming by Haeckel in 1888. Being in the chondrophore group, it is likely that its behaviour is similar to the other species of the genera in the family. However there are also serious doubts as to its very existence as a separate species and may in fact be a synonym for Porpita porpita instead.

<i>Bathyphysa conifera</i> Species of siphonophore sometimes called the flying spaghetti monster

Bathyphysa conifera, sometimes called the flying spaghetti monster, is a bathypelagic species of siphonophore in the family Rhizophysidae. It is found in the northern Atlantic Ocean and off the coast of Southwestern Africa and California.

<span class="mw-page-title-main">Physonectae</span> Suborder of siphonophores

Physonectae is a suborder of siphonophores. In Japanese it is called 胞泳.

<span class="mw-page-title-main">Calycophorae</span> Suborder of Siphonophorae

Calycophorae is a suborder of Siphonophores alongside two other suborders Physonectae and Cystonectae. This suborder includes the giant siphonophore, ; one of the longest lengthwise extant creatures (40–50m). While the Physonectae have a pneumatophore, nectophore, and a siphosome, Cystonectae lack a nectophore, and Calycophorae lack a pneumatophore. From the bell-shaped nectophores, Physonectae and Calycophorae are called Codonophores or Greek for bell-bearers. The distribution, morphology, and behaviors of Calycophorae species are vast and greatly depend on the species. Calycophoraes typically consist of two nectophores with a siphosome that have many tentacles that grow out of the siphosome. The Calycophoraes move by propelling water out of the nectophore much like how jellyfishes move. The tentacles act as fishing nets where the nematocysts on the tentacles paralyze their prey which are then later fed on. Calycophorae have three life stages, which are the larval development stage, the polygastric stage, and the eudoxid maturation stage. Each Calycophorae colony forms from one fertilized egg.

<i>Abylopsis tetragona</i> Species of cnidarian

Abylopsis tetragona is a species of siphonophore in the family Abylidae.

Lensia is a genus of hydrozoans belonging to the order Siphonoporae and the family Diphyidae. This genus is colonial and consists of many different types of highly specialized zooids. The genus Lensia was first established in 1932 by Dr. Arthur Knyvett Totton, who would also describe and add another 11 species during his career. As of March 2023, the genus consists of only 26 described and accepted species and an additional seven uncertain species, according to the World Register of Marine Species.

Tima nigroannulata, commonly known as the elegant jellyfish, is a recently discovered colonial hydrozoa found on the Pacific coast of Japan.

References

  1. 1 2 Eschscholtz, Fr. (1829). System der Acalephen. Eine ausführliche Beschreibung aller medusenartigen Strahlthiere. Berlin: Ferdinand Dümmler. p. 143. doi:10.5962/bhl.title.64070.
  2. 1 2 Schuchert P, ed. (2022). "Apolemiidae Huxley, 1859". World Hydrozoa database. World Register of Marine Species . Retrieved 16 November 2022.
  3. Schuchert P, ed. (2022). "Apolemia Eschscholtz, 1829". World Hydrozoa database. World Register of Marine Species . Retrieved 16 November 2022.
  4. Koumoundouros, Tessa. "What The Heck Is This Long, Hypnotic Stringy Thing Floating in The Ocean?". ScienceAlert. Retrieved May 26, 2020.
  5. McGreevy, Nora. "Watch This Giant, Eerie, String-Like Sea Creature Hunt for Food in the Indian Ocean". Smithsonian Magazine. Retrieved 2021-01-27.
  6. Wood, Gerald The Guinness Book of Animal Facts and Feats (1983) ISBN   978-0-85112-235-9