Thymic involution | |
---|---|
Specialty | Imunology |
Symptoms | shrinking of thymus |
Thymic involution is the shrinking (involution) of the thymus with age, resulting in changes in the architecture of the thymus and a decrease in tissue mass. [1] Thymus involution is one of the major characteristics of vertebrate immunology, and occurs in almost all vertebrates, from birds, teleosts, amphibians to reptiles, though the thymi of a few species of sharks are known not to involute. [1] [2] This process is genetically regulated, with the nucleic material responsible being an example of a conserved sequence — one maintained through natural selection (though the pressures shaping this are unclear as will be discussed) since it arose in a common ancestor of all species now exhibiting it, via a phenomenon known to bioinformaticists as an orthologic sequence homology.
T-cells are named for the thymus where T-lymphocytes migrate from the bone marrow to mature. Its regression has been linked to the reduction in immunosurveillance [3] and the rise of infectious disease and cancer incidence in the elderly (in some cases risk is inversely proportional to thymus size). [4] Though thymic involution has been linked to immunosenescence, it is not induced by senescence as the organ starts involuting from a young age: [5] in humans, as early as the first year after birth. [6]
Though the thymus is fully developed before birth, [7] newborns have an essentially empty peripheral immune compartment immediately after birth. [8] [9] Hence, T lymphocytes are not present in the peripheral lymphoid tissues, where naïve, mature lymphocytes are stimulated to respond to pathogens. [1] In order to populate the peripheral system, the thymus increases in size and upregulates its function during the early neonatal period. [1]
Though some sources[ which? ] continue to cite puberty as the time of onset, studies have shown thymic involution to start much earlier. [1] The crucial distinction came from the observation that the thymus consists of two main components: the true thymic epithelial space (TES) and the perivascular space (PVS). [6] Thymopoiesis, or T-cell maturation, only occurs in the former. In humans, the TES starts decreasing from the first year of life at a rate of 3% until middle age (35–45 years of age), whereupon it decreases at a rate of 1% until death. [6] Hypothetically, the thymus should stop functioning at around 105 years of age; [10] but, studies with bone marrow transplant patients have shown that the thymi of the majority of patients over forty were unable to build a naïve T cell compartment. [11]
With both qualitative and quantitative changes to thymus production occurring as age increases, thymic involution corresponds with the progressive deterioration of the stroma of the thymus and a significant loss of thymic epithelial cells (TECs). Thymic epithelial cells aid in Thymopoiesis and the development of new T-cells. [12]
The ability of the immune system to mount a strong protective response depends on the receptor diversity of naive T cells (TCR). Thymic involution results in a decreased output of naïve T lymphocytes – mature T cells that are tolerant to self antigens, responsive to foreign antigens, but have not yet been stimulated by a foreign substance. In adults, naïve T-cells are hypothesized to be primarily maintained through homeostatic proliferation, or cell division of existing naïve T cells. Though homeostatic proliferation helps sustain TCR even with minimal to nearly absent thymic activity, it does not increase the receptor diversity. [13] For yet unknown reasons, TCR diversity drops drastically around age 65. [13] Loss of thymic function and TCR diversity is thought to contribute to weaker immunosurveillance of the elderly, including increasing instances of diseases such as cancers, autoimmunity, and opportunistic infections. [14]
There is growing evidence that thymic involution is plastic and can be therapeutically halted or reversed in order to help boost the immune system. Under certain circumstances, the thymus has been shown to undergo acute thymic involution (alternatively called transient involution). [1] For example, transient involution has been induced in humans and other animals by stresses [15] such as infections, [16] [17] pregnancy, [18] and malnutrition. [17] [19] [20] The thymus has also been shown to decrease during hibernation and, in frogs, change in size depending on the season, growing smaller in the winter. [21] Studies on acute thymic involution may help in developing treatments for patients, who for example are unable to restore immune function after chemotherapy, ionizing radiation, or infections like HIV. [14] Research has shown the rate of thymus involution to reduce when, for men the testes, or for women the ovaries, were removed; demonstrating that sex hormones, and especially testosterone, have a marked influence on the involution process. However, the manner in which the sex hormones moderate this process is not yet fully understood. In other research the results of the Greg Fahy TRIIM trial showed clinically significant reversal of thymus involution after the administration of human growth hormone (HGH), Dehydroepiandrosterone (DHEA) and metformin. [22] The two results could mean that HGH and mTOR inhibition in autophagy reverses thymus involution with testosterone advancing thymus involution. [23]
Thymic involution remains an evolutionary mystery since it occurs in most vertebrates despite its negative effects.
Since it is not induced by senescence, many scientists have hypothesized that there may have been evolutionary pressures for the organ to involute. A few hypotheses are as follows:
The thymus is a specialized primary lymphoid organ of the immune system. Within the thymus, thymus cell lymphocytes or T cells mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders. The thymus is located in the upper front part of the chest, in the anterior superior mediastinum, behind the sternum, and in front of the heart. It is made up of two lobes, each consisting of a central medulla and an outer cortex, surrounded by a capsule.
T cells are one of the important types of white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell receptor (TCR) on their cell surface.
A cytotoxic T cell (also known as TC, cytotoxic T lymphocyte, CTL, T-killer cell, cytolytic T cell, CD8+ T-cell or killer T cell) is a T lymphocyte (a type of white blood cell) that kills cancer cells, cells that are infected by intracellular pathogens such as viruses or bacteria, or cells that are damaged in other ways.
The T helper cells (Th cells), also known as CD4+ cells or CD4-positive cells, are a type of T cell that play an important role in the adaptive immune system. They aid the activity of other immune cells by releasing cytokines. They are considered essential in B cell antibody class switching, breaking cross-tolerance in dendritic cells, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages and neutrophils. CD4+ cells are mature Th cells that express the surface protein CD4. Genetic variation in regulatory elements expressed by CD4+ cells determines susceptibility to a broad class of autoimmune diseases.
The regulatory T cells (Tregs or Treg cells), formerly known as suppressor T cells, are a subpopulation of T cells that modulate the immune system, maintain tolerance to self-antigens, and prevent autoimmune disease. Treg cells are immunosuppressive and generally suppress or downregulate induction and proliferation of effector T cells. Treg cells express the biomarkers CD4, FOXP3, and CD25 and are thought to be derived from the same lineage as naïve CD4+ cells. Because effector T cells also express CD4 and CD25, Treg cells are very difficult to effectively discern from effector CD4+, making them difficult to study. Research has found that the cytokine transforming growth factor beta (TGF-β) is essential for Treg cells to differentiate from naïve CD4+ cells and is important in maintaining Treg cell homeostasis.
In immunology, central tolerance is the process of eliminating any developing T or B lymphocytes that are autoreactive, i.e. reactive to the body itself. Through elimination of autoreactive lymphocytes, tolerance ensures that the immune system does not attack self peptides. Lymphocyte maturation occurs in primary lymphoid organs such as the bone marrow and the thymus. In mammals, B cells mature in the bone marrow and T cells mature in the thymus.
Memory T cells are a subset of T lymphocytes that might have some of the same functions as memory B cells. Their lineage is unclear.
Immune tolerance, also known as immunological tolerance or immunotolerance, refers to the immune system's state of unresponsiveness to substances or tissues that would otherwise trigger an immune response. It arises from prior exposure to a specific antigen and contrasts the immune system's conventional role in eliminating foreign antigens. Depending on the site of induction, tolerance is categorized as either central tolerance, occurring in the thymus and bone marrow, or peripheral tolerance, taking place in other tissues and lymph nodes. Although the mechanisms establishing central and peripheral tolerance differ, their outcomes are analogous, ensuring immune system modulation.
A thymocyte is an immune cell present in the thymus, before it undergoes transformation into a T cell. Thymocytes are produced as stem cells in the bone marrow and reach the thymus via the blood.
MHC-restricted antigen recognition, or MHC restriction, refers to the fact that a T cell can interact with a self-major histocompatibility complex molecule and a foreign peptide bound to it, but will only respond to the antigen when it is bound to a particular MHC molecule.
In immunology, a naive T cell (Th0 cell) is a T cell that has differentiated in the thymus, and successfully undergone the positive and negative processes of central selection in the thymus. Among these are the naive forms of helper T cells (CD4+) and cytotoxic T cells (CD8+). Naive T cells, unlike activated or memory T cells, have not encountered its cognate antigen within the periphery. After this encounter, the naive T cell is considered a mature T cell.
Intraepithelial lymphocytes (IEL) are lymphocytes found in the epithelial layer of mammalian mucosal linings, such as the gastrointestinal (GI) tract and reproductive tract. However, unlike other T cells, IELs do not need priming. Upon encountering antigens, they immediately release cytokines and cause killing of infected target cells. In the GI tract, they are components of gut-associated lymphoid tissue (GALT).
Immunosenescence is the gradual deterioration of the immune system, brought on by natural age advancement. A 2020 review concluded that the adaptive immune system is affected more than the innate immune system. Immunosenescence involves both the host's capacity to respond to infections and the development of long-term immune memory. Age-associated immune deficiency is found in both long- and short-lived species as a function of their age relative to life expectancy rather than elapsed time.
In immunology, peripheral tolerance is the second branch of immunological tolerance, after central tolerance. It takes place in the immune periphery. Its main purpose is to ensure that self-reactive T and B cells which escaped central tolerance do not cause autoimmune disease. Peripheral tolerance can also serve a purpose in preventing an immune response to harmless food antigens and allergens.
Gamma delta T cells are T cells that have a γδ T-cell receptor (TCR) on their surface. Most T cells are αβ T cells with TCR composed of two glycoprotein chains called α (alpha) and β (beta) TCR chains. In contrast, γδ T cells have a TCR that is made up of one γ (gamma) chain and one δ (delta) chain. This group of T cells is usually less common than αβ T cells. Their highest abundance is in the gut mucosa, within a population of lymphocytes known as intraepithelial lymphocytes (IELs).
Lymphocyte-activation gene 3, also known as LAG-3, is a protein which in humans is encoded by the LAG3 gene. LAG3, which was discovered in 1990 and was designated CD223 after the Seventh Human Leucocyte Differentiation Antigen Workshop in 2000, is a cell surface molecule with diverse biological effects on T cell function but overall has an immune inhibitory effect. It is an immune checkpoint receptor and as such is the target of various drug development programs by pharmaceutical companies seeking to develop new treatments for cancer and autoimmune disorders. In soluble form it is also being developed as a cancer drug in its own right.
Thymic stromal lymphopoietin (TSLP) is an interleukin (IL)-2-like cytokine, alarmin, and growth factor involved in numerous physiological and pathological processes, primarily those of the immune system. It shares a common ancestor with IL-7.
Mucosal-associated invariant T cells make up a subset of T cells in the immune system that display innate, effector-like qualities. In humans, MAIT cells are found in the blood, liver, lungs, and mucosa, defending against microbial activity and infection. The MHC class I-like protein, MR1, is responsible for presenting bacterially-produced vitamin B2 and B9 metabolites to MAIT cells. After the presentation of foreign antigen by MR1, MAIT cells secrete pro-inflammatory cytokines and are capable of lysing bacterially-infected cells. MAIT cells can also be activated through MR1-independent signaling. In addition to possessing innate-like functions, this T cell subset supports the adaptive immune response and has a memory-like phenotype. Furthermore, MAIT cells are thought to play a role in autoimmune diseases, such as multiple sclerosis, arthritis and inflammatory bowel disease, although definitive evidence is yet to be published.
Virtual memory T cells (TVM) are a subtype of T lymphocytes. These are cells that have a memory phenotype but have not been exposed to a foreign antigen. They are classified as memory cells but do not have an obvious memory function. They were first observed and described in 2009. The name comes from a computerized "virtual memory" that describes a working memory based on an alternative use of an existing space.
Thymus stromal cells are subsets of specialized cells located in different areas of the thymus. They include all non-T-lineage cells, such as thymic epithelial cells (TECs), endothelial cells, mesenchymal cells, dendritic cells, and B lymphocytes, and provide signals essential for thymocyte development and the homeostasis of the thymic stroma.