LatticeMico8

Last updated
LatticeMico8
Designer Lattice Semiconductor
Bits8-bit
OpenNo
Registers
General purpose 32

The LatticeMico8 is an 8-bit microcontroller soft processor core optimized for field-programmable gate arrays (FPGAs) and crossover programmable logic device architecture from Lattice Semiconductor. Combining a full 18-bit wide instruction set with 32 general purpose registers, the LatticeMico8 is a flexible Verilog reference design suitable for a wide variety of markets, including communications, consumer, computer, medical, industrial, and automotive. The core consumes minimal device resources, less than 200 look up tables (LUTs) in the smallest configuration, while maintaining a broad feature set.

In computer architecture, 8-bit integers, memory addresses, or other data units are those that are 8 bits wide. Also, 8-bit CPU and ALU architectures are those that are based on registers, address buses, or data buses of that size. 8-bit is also a generation of microcomputers in which 8-bit microprocessors were the norm.

Field-programmable gate array array of logic gates that are reprogrammable

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence the term "field-programmable". The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an Application-Specific Integrated Circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic design automation tools.

Lattice Semiconductor Corporation is an American manufacturer of high-performance programmable logic devices. Founded in 1983, the company employs about 700 people and has annual revenues of around $300 million, with Jim Anderson as the chief executive officer. The Oregon-based company is the number three ranked company in world market share for field programmable gate array (FPGA) devices, and number two for CPLDs & SPLDs. The company went public in 1989 and is traded on the NASDAQ stock exchange under the symbol LSCC.

The LatticeMico8 is licensed under a new free (IP) core license, the first such license offered by any FPGA supplier. The main benefits of using the IP core are greater flexibility, improved portability, and no cost. This new agreement provides some of the benefits of standard open source and allows users to mix proprietary designs with the core. Additionally, it allows for the distribution of designs in bitstream or FPGA format without accompanying it with a copy of the license. Developers are required to keep the core's source code confidential and use "for the sole purposes of design documentation and preparation of Derivative Works ... to develop designs to program Lattice programmable logic devices". [1]

An open-source license is a type of license for computer software and other products that allows the source code, blueprint or design to be used, modified and/or shared under defined terms and conditions. This allows end users and commercial companies to review and modify the source code, blueprint or design for their own customization, curiosity or troubleshooting needs. Open-source licensed software is mostly available free of charge, though this does not necessarily have to be the case. Licenses which only permit non-commercial redistribution or modification of the source code for personal use only are generally not considered as open-source licenses. However, open-source licenses may have some restrictions, particularly regarding the expression of respect to the origin of software, such as a requirement to preserve the name of the authors and a copyright statement within the code, or a requirement to redistribute the licensed software only under the same license. One popular set of open-source software licenses are those approved by the Open Source Initiative (OSI) based on their Open Source Definition (OSD).

Features

Related Research Articles

Processor design is the design engineering task of creating a processor, a component of computer hardware. It is a subfield of computer engineering and electronics engineering (fabrication). The design process involves choosing an instruction set and a certain execution paradigm and results in a microarchitecture, which might be described in e.g. VHDL or Verilog. For microprocessor design, this description is then manufactured employing some of the various semiconductor device fabrication processes, resulting in a die which is bonded onto a chip carrier. This chip carrier is then soldered onto, or inserted into a socket on, a printed circuit board (PCB).

Intel MCS-51 microcontroller chip

The Intel MCS-51 is a single chip microcontroller (MCU) series developed by Intel in 1980 for use in embedded systems. The architect of the instruction set of the Intel MCS-51 was John H. Wharton. Intel's original versions were popular in the 1980s and early 1990s and enhanced binary compatible derivatives remain popular today. It is an example of a complex instruction set computer, and has separate memory spaces for program instructions and data.

Application-specific integrated circuit Integrated circuit customized (typically optimized) for a specific task

An application-specific integrated circuit is an integrated circuit (IC) customized for a particular use, rather than intended for general-purpose use. For example, a chip designed to run in a digital voice recorder or a high-efficiency bitcoin miner is an ASIC. Application-specific standard products (ASSPs) are intermediate between ASICs and industry standard integrated circuits like the 7400 series or the 4000 series.

PIC microcontrollers

PIC is a family of microcontrollers made by Microchip Technology, derived from the PIC1650 originally developed by General Instrument's Microelectronics Division. The name PIC initially referred to Peripheral Interface Controller, then it was corrected as Programmable Intelligent Computer. The first parts of the family were available in 1976; by 2013 the company had shipped more than twelve billion individual parts, used in a wide variety of embedded systems.

OpenRISC is a project to develop a series of open-source hardware based central processing units (CPUs) on established reduced instruction set computing (RISC) principles. It includes an instruction set architecture (ISA) using an open-source license. It is the original flagship project of the OpenCores community.

JTAG is an industry standard for verifying designs and testing printed circuit boards after manufacture.

Blackfin

The Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality supplied by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.

LEON is a 32-bit CPU microprocessor core, based on the SPARC-V8 RISC architecture and instruction set designed by Sun Microsystems. It was originally designed by the European Space Research and Technology Centre (ESTEC), part of the European Space Agency (ESA), and after that by Gaisler Research. It is described in synthesizable VHDL. LEON has a dual license model: An LGPL/GPL FLOSS license that can be used without licensing fee, or a proprietary license that can be purchased for integration in a proprietary product. The core is configurable through VHDL generics, and is used in system-on-a-chip (SOC) designs both in research and commercial settings.

Nios II is a 32-bit embedded-processor architecture designed specifically for the Altera family of field-programmable gate array (FPGA) integrated circuits. Nios II incorporates many enhancements over the original Nios architecture, making it more suitable for a wider range of embedded computing applications, from digital signal processing (DSP) to system-control.

The MicroBlaze is a soft microprocessor core designed for Xilinx field-programmable gate arrays (FPGA). As a soft-core processor, MicroBlaze is implemented entirely in the general-purpose memory and logic fabric of Xilinx FPGAs.

In electronic design a semiconductor intellectual property core, IP core, or IP block is a reusable unit of logic, cell, or integrated circuit layout design that is the intellectual property of one party. IP cores may be licensed to another party or can be owned and used by a single party alone. The term is derived from the licensing of the patent and/or source code copyright that exist in the design. IP cores can be used as building blocks within application-specific integrated circuit (ASIC) designs or field-programmable gate array (FPGA) logic designs.

PicoBlaze is the designation of a series of three free soft processor cores from Xilinx for use in their FPGA and CPLD products. They are based on an 8-bit RISC architecture and can reach speeds up to 100 MIPS on the Virtex 4 FPGA's family. The processors have an 8-bit address and data port for access to a wide range of peripherals. The license of the cores allows their free use, albeit only on Xilinx devices, and they come with development tools. Third party tools are available from Mediatronix and others. Also PacoBlaze, a behavioral and device independent implementation of the cores exists and is released under the BSD License. The PauloBlaze is an open source VHDL implementation under the Apache License.

The XAP processor is a RISC processor architecture developed by Cambridge Consultants since 1994. XAP processors are a family of 16-bit and 32-bit cores, all of which are intended for use in an application-specific integrated circuit or ASIC chip design. XAP processors were designed for use in mixed-signal integrated circuits for sensor or wireless applications including Bluetooth, ZigBee, GPS, RFID or Near Field Communication chips. Typically these integrated circuits are used in low cost, high volume products that are battery-powered and must have low energy consumption. There are other applications where XAP processors have been used to good effect, such as wireless sensor networks and medical devices, e.g. hearing aids.

The history of general-purpose CPUs is a continuation of the earlier history of computing hardware.

LatticeMico32 is a 32-bit microprocessor soft core from Lattice Semiconductor optimized for field-programmable gate arrays (FPGAs). It uses a Harvard architecture, which means the instruction and data buses are separate. Bus arbitration logic can be used to combine the two buses, if desired.

Open-source computing hardware comprises computers and computer components with an open design. They are designed as open-source hardware using open-source principles.

The ZPU is a microprocessor stack machine designed by Norwegian company Zylin AS to run supervisory code in electronic systems that include a field-programmable gate array (FPGA).

iCE is the brand name used for a family of low-power FPGAs produced by Lattice Semiconductor. Parts in the family are marketed with the "world's smallest FPGA" tagline, and are intended for use in portable and battery-powered devices, where they would be used to offload tasks from the device's main processor or SoC. By doing so, the main processor and its peripherals can enter a low-power state or be powered off entirely, potentially increasing battery life.

References

  1. "Reference Design with Source Code License Agreement" . Retrieved 2011-02-01.