JHDL

Last updated

JHDL (Just-Another Hardware Description Language) is a low-level structural hardware description language, focused primarily on building circuits via an Object Oriented approach that bundles collections of gates into Java objects. Implemented as a toolset and class library on top of the Java programming language, its primary use is for the design of digital circuits for implementation in field-programmable gate arrays (FPGAs). Particular attention was paid to supporting the Xilinx series of chips.

Contents

When the design is ready to be placed in a fabric, the developer simply generates an Electronic Design Interchange Format (EDIF) netlist and imports it into a toolkit. Once the netlist is imported, the developer should be able to transfer the circuit via a Joint Test Action Group (JTAG) cable. EDIF netlisting is supported for the XC4000, Virtex, and Virtex-II series of FPGAs.

JHDL was developed at BYU in the Configurable Computing Laboratory, the project initiated in 1997. [1] As of July 2013, the latest update to the JHDL project was made in May 2006 according to the official JDHL website.

Features

The JHDL language features include:

Behavioral synthesis is not yet fully supported.

The integrated JHDL Workbench environment is designed to allow developers to graphically test and trace their circuit designs. This tool includes:

Naming

Originally, the J in "JHDL" stood for "Java". However, to prevent trademark issues, the name has been backronymed to stand for Just-Another Hardware Description Language.

Related Research Articles

EDIF is a vendor-neutral format based on S-Expressions in which to store Electronic netlists and schematics. It was one of the first attempts to establish a neutral data exchange format for the electronic design automation (EDA) industry. The goal was to establish a common format from which the proprietary formats of the EDA systems could be derived. When customers needed to transfer data from one system to another, it was necessary to write translators from one format to other. As the number of formats (N) multiplied, the translator issue became an N-squared problem. The expectation was that with EDIF the number of translators could be reduced to the number of involved systems.

<span class="mw-page-title-main">Field-programmable gate array</span> Array of logic gates that are reprogrammable

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing – hence the term field-programmable. The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC). Circuit diagrams were previously used to specify the configuration, but this is increasingly rare due to the advent of electronic design automation tools.

In computer engineering, a hardware description language (HDL) is a specialized computer language used to describe the structure and behavior of electronic circuits, and most commonly, digital logic circuits.

<span class="mw-page-title-main">Application-specific integrated circuit</span> Integrated circuit customized (typically optimized) for a specific task

An application-specific integrated circuit is an integrated circuit (IC) chip customized for a particular use, rather than intended for general-purpose use, such as a chip designed to run in a digital voice recorder or a high-efficiency video codec. Application-specific standard product (ASSP) chips are intermediate between ASICs and industry standard integrated circuits like the 7400 series or the 4000 series. ASIC chips are typically fabricated using metal-oxide-semiconductor (MOS) technology, as MOS integrated circuit chips.

Reconfigurable computing is a computer architecture combining some of the flexibility of software with the high performance of hardware by processing with very flexible high speed computing fabrics like field-programmable gate arrays (FPGAs). The principal difference when compared to using ordinary microprocessors is the ability to make substantial changes to the datapath itself in addition to the control flow. On the other hand, the main difference from custom hardware, i.e. application-specific integrated circuits (ASICs) is the possibility to adapt the hardware during runtime by "loading" a new circuit on the reconfigurable fabric.

<span class="mw-page-title-main">Xilinx</span> American technology company

Xilinx, Inc. was an American technology and semiconductor company that primarily supplied programmable logic devices. The company was known for inventing the first commercially viable field-programmable gate array (FPGA) and creating the first fabless manufacturing model.

Place and route is a stage in the design of printed circuit boards, integrated circuits, and field-programmable gate arrays. As implied by the name, it is composed of two steps, placement and routing. The first step, placement, involves deciding where to place all electronic components, circuitry, and logic elements in a generally limited amount of space. This is followed by routing, which decides the exact design of all the wires needed to connect the placed components. This step must implement all the desired connections while following the rules and limitations of the manufacturing process.

LEON is a radiation-tolerant 32-bit central processing unit (CPU) microprocessor core that implements the SPARC V8 instruction set architecture (ISA) developed by Sun Microsystems. It was originally designed by the European Space Research and Technology Centre (ESTEC), part of the European Space Agency (ESA), without any involvement by Sun. Later versions have been designed by Gaisler Research, under a variety of owners. It is described in synthesizable VHSIC Hardware Description Language (VHDL). LEON has a dual license model: An GNU Lesser General Public License (LGPL) and GNU General Public License (GPL) free and open-source software (FOSS) license that can be used without licensing fee, or a proprietary license that can be purchased for integration in a proprietary product. The core is configurable through VHDL generics, and is used in system on a chip (SOC) designs both in research and commercial settings.

The MicroBlaze is a soft microprocessor core designed for Xilinx field-programmable gate arrays (FPGA). As a soft-core processor, MicroBlaze is implemented entirely in the general-purpose memory and logic fabric of Xilinx FPGAs.

In electronic design, a semiconductor intellectual property core, IP core, or IP block is a reusable unit of logic, cell, or integrated circuit layout design that is the intellectual property of one party. IP cores can be licensed to another party or owned and used by a single party. The term comes from the licensing of the patent or source code copyright that exists in the design. Designers of application-specific integrated circuits (ASIC) and systems of field-programmable gate array (FPGA) logic can use IP cores as building blocks.

<span class="mw-page-title-main">Standard cell</span>

In semiconductor design, standard cell methodology is a method of designing application-specific integrated circuits (ASICs) with mostly digital-logic features. Standard cell methodology is an example of design abstraction, whereby a low-level very-large-scale integration (VLSI) layout is encapsulated into an abstract logic representation.

<span class="mw-page-title-main">Hardware acceleration</span> Specialized computer hardware

Hardware acceleration is the use of computer hardware designed to perform specific functions more efficiently when compared to software running on a general-purpose central processing unit (CPU). Any transformation of data that can be calculated in software running on a generic CPU can also be calculated in custom-made hardware, or in some mix of both.

VTune Profiler is a performance analysis tool for x86 based machines running Linux or Microsoft Windows operating systems. Many features work on both Intel and AMD hardware, but advanced hardware-based sampling requires an Intel-manufactured CPU.

Intel Quartus Prime is programmable logic device design software produced by Intel; prior to Intel's acquisition of Altera the tool was called Altera Quartus Prime, earlier Altera Quartus II. Quartus Prime enables analysis and synthesis of HDL designs, which enables the developer to compile their designs, perform timing analysis, examine RTL diagrams, simulate a design's reaction to different stimuli, and configure the target device with the programmer. Quartus Prime includes an implementation of VHDL and Verilog for hardware description, visual editing of logic circuits, and vector waveform simulation.

This is a glossary of terms used in the field of Reconfigurable computing and reconfigurable computing systems, as opposed to the traditional Von Neumann architecture.

Aldec, Inc. is a privately owned electronic design automation company based in Henderson, Nevada that provides software and hardware used in creation and verification of digital designs targeting FPGA and ASIC technologies.

<span class="mw-page-title-main">EVE/ZeBu</span> Provider of hardware-assisted verification tools

EVE/ZeBu is a provider of hardware-assisted verification tools for functional verification of Application-specific integrated circuits (ASICs) and system on chip (SOC) designs and for validation of embedded software ahead of implementation in silicon. EVE's hardware acceleration and hardware emulation products work in conjunction with Verilog, SystemVerilog, and VHDL-based simulators from Synopsys, Cadence Design Systems and Mentor Graphics. EVE's flagship product is ZeBu.

Virtex is the flagship family of FPGA products developed by Xilinx, a part of AMD. Other current product lines include Kintex (mid-range) and Artix (low-cost), each including configurations and models optimized for different applications. In addition, Xilinx offers the Spartan low-cost series, which continues to be updated and is nearing production utilizing the same underlying architecture and process node as the larger 7-series devices.

<span class="mw-page-title-main">Stratix</span>

Stratix is a family of FPGA products developed by Intel, Programmable Solutions Group. Other current product lines include e.g. Arria and Cyclone families.

References

  1. Brent E. Nelson, "The Mythical CCM: In Search of Usable (and Resuable) FPGA-Based General Computing Machines," asap, pp.5-14, IEEE 17th International Conference on Application-specific Systems, Architectures and Processors (ASAP'06), 2006