Rational consequence relation

Last updated

In logic, a rational consequence relation is a non-monotonic consequence relation satisfying certain properties listed below.

Contents

A rational consequence relation is a logical framework that refines traditional deductive reasoning to better model real-world scenarios. It incorporates rules like reflexivity, left logical equivalence, right-hand weakening, cautious monotony, disjunction on the left-hand side, logical and on the right-hand side, and rational monotony. These rules enable the relation to handle everyday situations more effectively by allowing for non-monotonic reasoning, where conclusions can be drawn based on usual rather than absolute implications. This approach is particularly useful in cases where adding more information can change the outcome, providing a more nuanced understanding than monotone consequence relations.

Properties

A rational consequence relation satisfies:

REF
Reflexivity

and the so-called GabbayMakinson rules:[ citation needed ]

LLE
Left logical equivalence
RWE
Right-hand weakening
CMO
Cautious monotonicity
DIS
Logical or (i.e. disjunction) on left hand side
AND
Logical and on right hand side
RMO
Rational monotonicity [ clarification needed ]

Uses

The rational consequence relation is non-monotonic, and the relation is intended to carry the meaning theta usually implies phi or phi usually follows from theta. In this sense it is more useful for modeling some everyday situations than a monotone consequence relation because the latter relation models facts in a more strict boolean fashion—something either follows under all circumstances or it does not.

Example: cake

The statement "If a cake contains sugar then it tastes good" implies under a monotone consequence relation the statement "If a cake contains sugar and soap then it tastes good." Clearly this doesn't match our own understanding of cakes. By asserting "If a cake contains sugar then it usually tastes good" a rational consequence relation allows for a more realistic model of the real world, and certainly it does not automatically follow that "If a cake contains sugar and soap then it usually tastes good."

Note that if we also have the information "If a cake contains sugar then it usually contains butter" then we may legally conclude (under CMO) that "If a cake contains sugar and butter then it usually tastes good.". Equally in the absence of a statement such as "If a cake contains sugar then usually it contains no soap" then we may legally conclude from RMO that "If the cake contains sugar and soap then it usually tastes good."

If this latter conclusion seems ridiculous to you then it is likely that you are subconsciously asserting your own preconceived knowledge about cakes when evaluating the validity of the statement. That is, from your experience you know that cakes that contain soap are likely to taste bad so you add to the system your own knowledge such as "Cakes that contain sugar do not usually contain soap.", even though this knowledge is absent from it. If the conclusion seems silly to you then you might consider replacing the word soap with the word eggs to see if it changes your feelings.

Example: drugs

Consider the sentences:

We may consider it reasonable to conclude:

This would not be a valid conclusion under a monotonic deduction system (omitting of course the word 'usually'), since the third sentence would contradict the first two. In contrast the conclusion follows immediately using the Gabbay–Makinson rules: applying the rule CMO to the last two sentences yields the result.

Consequences

The following consequences follow from the above rules:

MP
Modus ponens
MP is proved via the rules AND and RWE.
CON
Conditionalisation
CC
Cautious cut
The notion of cautious cut simply encapsulates the operation of conditionalisation, followed by MP. It may seem redundant in this sense, but it is often used in proofs so it is useful to have a name for it to act as a shortcut.
SCL
Supraclassity
SCL is proved trivially via REF and RWE.

Rational consequence relations via atom preferences

Let be a finite language. An atom is a formula of the form (where and ). Notice that there is a unique valuation which makes any given atom true (and conversely each valuation satisfies precisely one atom). Thus an atom can be used to represent a preference about what we believe ought to be true.

Let be the set of all atoms in L. For SL, define .

Let be a sequence of subsets of . For , in SL, let the relation be such that if one of the following holds:

  1. for each
  2. for some and for the least such i, .

Then the relation is a rational consequence relation. This may easily be verified by checking directly that it satisfies the GM-conditions.

The idea behind the sequence of atom sets is that the earlier sets account for the most likely situations such as "young people are usually law abiding" whereas the later sets account for the less likely situations such as "young joyriders are usually not law abiding".

Notes

  1. By the definition of the relation , the relation is unchanged if we replace with , with ... and with . In this way we make each disjoint. Conversely it makes no difference to the rational consequence relation if we add to subsequent atoms from any of the preceding .

The representation theorem

It can be proven that any rational consequence relation on a finite language is representable via a sequence of atom preferences above. That is, for any such rational consequence relation there is a sequence of subsets of such that the associated rational consequence relation is the same relation:

Notes

  1. By the above property of , the representation of a rational consequence relation need not be unique—if the are not disjoint then they can be made so without changing the rational consequence relation and conversely if they are disjoint then each subsequent set can contain any of the atoms of the previous sets without changing the rational consequence relation.

Related Research Articles

<span class="mw-page-title-main">Hydrogen atom</span> Atom of the element hydrogen

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively charged proton and a single negatively charged electron bound to the nucleus by the Coulomb force. Atomic hydrogen constitutes about 75% of the baryonic mass of the universe.

<span class="mw-page-title-main">Potential flow</span> Velocity field as the gradient of a scalar function

In fluid dynamics, potential flow is the ideal flow pattern of an inviscid fluid. Potential flows are described and determined by mathematical methods.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation . Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.

<span class="mw-page-title-main">Rabi cycle</span> Quantum mechanical phenomenon

In physics, the Rabi cycle is the cyclic behaviour of a two-level quantum system in the presence of an oscillatory driving field. A great variety of physical processes belonging to the areas of quantum computing, condensed matter, atomic and molecular physics, and nuclear and particle physics can be conveniently studied in terms of two-level quantum mechanical systems, and exhibit Rabi flopping when coupled to an optical driving field. The effect is important in quantum optics, magnetic resonance and quantum computing, and is named after Isidor Isaac Rabi.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory.

<span class="mw-page-title-main">Routhian mechanics</span> Formulation of classical mechanics

In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. Routhian mechanics is equivalent to Lagrangian mechanics and Hamiltonian mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.

Hill's spherical vortex is an exact solution of the Euler equations that is commonly used to model a vortex ring. The solution is also used to model the velocity distribution inside a spherical drop of one fluid moving at a constant velocity through another fluid at small Reynolds number. The vortex is named after Micaiah John Muller Hill who discovered the exact solution in 1894. The two-dimensional analogue of this vortex is the Lamb–Chaplygin dipole.

In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Such an operator is applied to a mathematical representation of the physical state of a system and yields an angular momentum value if the state has a definite value for it. In both classical and quantum mechanical systems, angular momentum is one of the three fundamental properties of motion.

In abstract algebraic logic, a branch of mathematical logic, the Leibniz operator is a tool used to classify deductive systems, which have a precise technical definition and capture a large number of logics. The Leibniz operator was introduced by Wim Blok and Don Pigozzi, two of the founders of the field, as a means to abstract the well-known Lindenbaum–Tarski process, that leads to the association of Boolean algebras to classical propositional calculus, and make it applicable to as wide a variety of sentential logics as possible. It is an operator that assigns to a given theory of a given sentential logic, perceived as a term algebra with a consequence operation on its universe, the largest congruence on the algebra that is compatible with the theory.

In mathematics, vector spherical harmonics (VSH) are an extension of the scalar spherical harmonics for use with vector fields. The components of the VSH are complex-valued functions expressed in the spherical coordinate basis vectors.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In fluid dynamics, the Oseen equations describe the flow of a viscous and incompressible fluid at small Reynolds numbers, as formulated by Carl Wilhelm Oseen in 1910. Oseen flow is an improved description of these flows, as compared to Stokes flow, with the (partial) inclusion of convective acceleration.

In general relativity, the Vaidya metric describes the non-empty external spacetime of a spherically symmetric and nonrotating star which is either emitting or absorbing null dusts. It is named after the Indian physicist Prahalad Chunnilal Vaidya and constitutes the simplest non-static generalization of the non-radiative Schwarzschild solution to Einstein's field equation, and therefore is also called the "radiating(shining) Schwarzschild metric".

The Bowring series of the transverse mercator published in 1989 by Bernard Russel Bowring gave formulas for the Transverse Mercator that are simpler to program but retain millimeter accuracy.

Calculations in the Newman–Penrose (NP) formalism of general relativity normally begin with the construction of a complex null tetrad, where is a pair of real null vectors and is a pair of complex null vectors. These tetrad vectors respect the following normalization and metric conditions assuming the spacetime signature

In physics, the distorted Schwarzschild metric is the metric of a standard/isolated Schwarzschild spacetime exposed in external fields. In numerical simulation, the Schwarzschild metric can be distorted by almost arbitrary kinds of external energy–momentum distribution. However, in exact analysis, the mature method to distort the standard Schwarzschild metric is restricted to the framework of Weyl metrics.

Conformastatic spacetimes refer to a special class of static solutions to Einstein's equation in general relativity.

In pure and applied mathematics, quantum mechanics and computer graphics, a tensor operator generalizes the notion of operators which are scalars and vectors. A special class of these are spherical tensor operators which apply the notion of the spherical basis and spherical harmonics. The spherical basis closely relates to the description of angular momentum in quantum mechanics and spherical harmonic functions. The coordinate-free generalization of a tensor operator is known as a representation operator.

Pure inductive logic (PIL) is the area of mathematical logic concerned with the philosophical and mathematical foundations of probabilistic inductive reasoning. It combines classical predicate logic and probability theory. Probability values are assigned to sentences of a first-order relational language to represent degrees of belief that should be held by a rational agent. Conditional probability values represent degrees of belief based on the assumption of some received evidence.

References