This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations . (January 2012) (Learn how and when to remove this template message) |
Fuzzy subalgebras theory is a chapter of fuzzy set theory. It is obtained from an interpretation in a multi-valued logic of axioms usually expressing the notion of subalgebra of a given algebraic structure.
In mathematics, a subalgebra is a subset of an algebra, closed under all its operations, and carrying the induced operations.
In mathematics, and more specifically in abstract algebra, an algebraic structure on a set A is a collection of finitary operations on A; the set A with this structure is also called an algebra.
Consider a first order language for algebraic structures with a monadic predicate symbol S. Then a fuzzy subalgebra is a fuzzy model of a theory containing, for any n-ary operation h, the axioms
and, for any constant c, S(c).
The first axiom expresses the closure of S with respect to the operation h, and the second expresses the fact that c is an element in S. As an example, assume that the valuation structure is defined in [0,1] and denote by the operation in [0,1] used to interpret the conjunction. Then a fuzzy subalgebra of an algebraic structure whose domain is D is defined by a fuzzy subset s : D → [0,1] of D such that, for every d1,...,dn in D, if h is the interpretation of the n-ary operation symbol h, then
An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.
Moreover, if c is the interpretation of a constant c such that s(c) = 1.
A largely studied class of fuzzy subalgebras is the one in which the operation coincides with the minimum. In such a case it is immediate to prove the following proposition.
Proposition. A fuzzy subset s of an algebraic structure defines a fuzzy subalgebra if and only if for every λ in [0,1], the closed cut {x ∈ D : s(x)≥ λ} of s is a subalgebra.
The fuzzy subgroups and the fuzzy submonoids are particularly interesting classes of fuzzy subalgebras. In such a case a fuzzy subset s of a monoid (M,•,u) is a fuzzy submonoid if and only if
where u is the neutral element in A.
Given a group G, a fuzzy subgroup of G is a fuzzy submonoid s of G such that
It is possible to prove that the notion of fuzzy subgroup is strictly related with the notions of fuzzy equivalence. In fact, assume that S is a set, G a group of transformations in S and (G,s) a fuzzy subgroup of G. Then, by setting
we obtain a fuzzy equivalence. Conversely, let e be a fuzzy equivalence in S and, for every transformation h of S, set
Then s defines a fuzzy subgroup of transformation in S. In a similar way we can relate the fuzzy submonoids with the fuzzy orders.
In mathematics, one can often define a direct product of objects already known, giving a new one. This generalizes the Cartesian product of the underlying sets, together with a suitably defined structure on the product set. More abstractly, one talks about the product in category theory, which formalizes these notions.
In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. The relation "is equal to" is the canonical example of an equivalence relation, where for any objects a, b, and c:
In mathematics, the power set of any set S is the set of all subsets of S, including the empty set and S itself, variously denoted as P(S), 𝒫(S), ℘(S), P(S), ℙ(S), or, identifying the powerset of S with the set of all functions from S to a given set of two elements, 2S. In axiomatic set theory, the existence of the power set of any set is postulated by the axiom of power set.
In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation.
In the various branches of mathematics that fall under the heading of abstract algebra, the kernel of a homomorphism measures the degree to which the homomorphism fails to be injective. An important special case is the kernel of a linear map. The kernel of a matrix, also called the null space, is the kernel of the linear map defined by the matrix.
In abstract algebra, a congruence relation is an equivalence relation on an algebraic structure that is compatible with the structure in the sense that algebraic operations done with equivalent elements will yield equivalent elements. Every congruence relation has a corresponding quotient structure, whose elements are the equivalence classes for the relation.
Fuzzy logic is a form of many-valued logic in which the truth values of variables may be any real number between 0 and 1 inclusive. It is employed to handle the concept of partial truth, where the truth value may range between completely true and completely false. By contrast, in Boolean logic, the truth values of variables may only be the integer values 0 or 1.
In mathematics, fuzzy sets are somewhat like sets whose elements have degrees of membership. Fuzzy sets were introduced independently by Lotfi A. Zadeh and Dieter Klaua in 1965 as an extension of the classical notion of set. At the same time, Salii (1965) defined a more general kind of structure called an L-relation, which he studied in an abstract algebraic context. Fuzzy relations, which are used now in different areas, such as linguistics, decision-making, and clustering, are special cases of L-relations when L is the unit interval [0, 1].
In mathematics, especially group theory, the centralizer of a subset S of a group G is the set of elements of G that commute with each element of S, and the normalizer of S are elements that satisfy a weaker condition. The centralizer and normalizer of S are subgroups of G, and can provide insight into the structure of G.
A set is closed under an operation if performance of that operation on members of the set always produces a member of that set. For example, the positive integers are closed under addition, but not under subtraction: is not a positive integer even though both 1 and 2 are positive integers. Another example is the set containing only zero, which is closed under addition, subtraction and multiplication.
In mathematics, a Heyting algebra is a bounded lattice equipped with a binary operation a → b of implication such that c ∧ a ≤ b is equivalent to c ≤ a → b. From a logical standpoint, A → B is by this definition the weakest proposition for which modus ponens, the inference rule A → B, A ⊢ B, is sound. Equivalently a Heyting algebra is a residuated lattice whose monoid operation is ∧; yet another definition is as a posetal cartesian closed category with all finite sums. Like Boolean algebras, Heyting algebras form a variety axiomatizable with finitely many equations. Heyting algebras were introduced by Arend Heyting (1930) to formalize intuitionistic logic.
In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antiautomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.
In mathematics, a closure operator on a set S is a function from the power set of S to itself which satisfies the following conditions for all sets
In the theory of algebraic groups, a Borel subgroup of an algebraic group G is a maximal Zariski closed and connected solvable algebraic subgroup. For example, in the group GLn, the subgroup of invertible upper triangular matrices is a Borel subgroup.
In the mathematical subject of universal algebra, a variety of algebras is the class of all algebraic structures of a given signature satisfying a given set of identities. For example, the groups form a variety of algebras, as do the abelian groups, the rings, the monoids etc. According to Birkhoff's theorem, a class of algebraic structures of the same signature is a variety if and only if it is closed under the taking of homomorphic images, subalgebras and (direct) products. In the context of category theory, a variety of algebras, together with its homomorphisms, forms a category; these are usually called finitary algebraic categories.
A fuzzy set operation is an operation on fuzzy sets. These operations are generalization of crisp set operations. There is more than one possible generalization. The most widely used operations are called standard fuzzy set operations. There are three operations: fuzzy complements, fuzzy intersections, and fuzzy unions.
In mathematics and abstract algebra, a relation algebra is a residuated Boolean algebra expanded with an involution called converse, a unary operation. The motivating example of a relation algebra is the algebra 2X² of all binary relations on a set X, that is, subsets of the cartesian square X2, with R•S interpreted as the usual composition of binary relations R and S, and with the converse of R as the converse relation.
Fuzzy mathematics forms a branch of mathematics related to fuzzy set theory and fuzzy logic. It started in 1965 after the publication of Lotfi Asker Zadeh's seminal work Fuzzy sets. A fuzzy subset A of a set X is a function A:X→L, where L is the interval [0,1]. This function is also called a membership function. A membership function is a generalization of a characteristic function or an indicator function of a subset defined for L = {0,1}. More generally, one can use a complete lattice L in a definition of a fuzzy subset A .