Mercury switch

Last updated
A Single-Pole, Single-Throw (SPST) mercury switch on millimetre graph paper, device length approximately 1.5 cm Mercury Switch without housing.jpg
A Single-Pole, Single-Throw (SPST) mercury switch on millimetre graph paper, device length approximately 1.5 cm
Another mercury switch design Mercury switch.jpg
Another mercury switch design

A mercury switch is an electrical switch that opens and closes a circuit when a small amount of the liquid metal mercury connects metal electrodes to close the circuit. There are several different basic designs (tilt, displacement, radial, etc.) but they all share the common design strength of non-eroding switch contacts.

Contents

The most common is the mercury tilt switch. It is in one state (open or closed) when tilted one direction with respect to horizontal, and the other state when tilted the other direction. This is what older style thermostats used to turn a heater or air conditioner on or off.

The mercury displacement switch uses a 'plunger' that dips into a pool of mercury, raising the level in the container to contact at least one electrode. This design is used in relays in industrial applications that need to switch high current loads frequently. These relays use electromagnetic coils to pull steel sleeves inside hermetically sealed containers.

History

From around 1905 to 1910 various mercury switches were invented, but the "mercury in glass envelope" switch got its start with patent 1598874 (filed on January 19, 1922 by Louis Phelan), [1] which evolved into a more modern mercury switch with a straight tubular glass envelope via patent 2232626 (filed on October 7, 1937 by Harold Olson of Honeywell). [2]

Description

Mercury switches have one or more sets of electrical contacts in a sealed glass envelope that contains a small quantity of mercury. The envelope may also contain hydrogen at pressure, an inert gas, or a vacuum. Gravity constantly pulls the drop of mercury to the lowest point in the envelope. When the switch is tilted in the appropriate direction, the mercury touches a set of contacts, thus completing an electrical circuit. Tilting the switch in the opposite direction moves the mercury away from that set of contacts, breaking that circuit. [3] The switch may contain multiple sets of contacts, closing different sets at different angles, allowing, for example, single-pole, double-throw ( SPDT ) operation.

Advantages

Mercury switches offer several advantages over other switch types:

Disadvantages

Mercury switches have several disadvantages:

Uses

Roll sensing

Tilt switches provide a rollover or tip over warning for applications like construction equipment and lift vehicles that operate in rugged terrain. There are several non-mercury types, but few are implemented due to sensitivity to shock and vibration, causing false tripping. However, devices resistant to shock and vibration do exist.

Automotive uses

Automobile manufacturers once used mercury switches for lighting controls (for example, trunk lid lights), ride control, and anti-lock braking systems. Scrapped automobiles can leak mercury to the environment if these switches are not properly removed. Since 2003, new American-built cars no longer use mercury switches. [6] [7]

Electrification of church bells

While doing more researches in 1950's, Austrian bellfounder from Vienna, Josef Pfundner jr., decided to develop a newer way to electrify church bells. Austria was already full of motors from German factory from Herford, which used motors with breaks and gearbox for changing direction of rotation and maintaining optimal swinging angle, and by that, to change swinging direction of bell. This option wasn't affordable so Pfundner decided to experiment something different. Option of motor with brake and mercury switch was economically better solution, but much more sensitive. One mistake while setting this switch on yoke of bell could be fatal for bell, since bell can be cracked if one of switches was broken. This type of "gearbox" on yoke contained 4 mercury switches, what means 2 switches for each direction, and it was connected with wire which was attached to motor, in manner to change swinging direction while bell is ringing. Swinging angle was able to adjust just by moving of switches a bit. Moving in one degree more could be fatal for bell or even would too low swinging angle. Since Josef Pfundner closed bellfoundry in 1971, bellfoundry Grassmayr from Innsbruck in Tyrol had been bought a licence for using such a patent and they continued to use it for their own electrification until early 2000's. Some electrificators in Croatia also adopted this system, like Alojz Domislović, his successor Luka Ivandija, and a bit later Ivan Bosilj. Ivan Bosilj stopped with usage of mercury switches in 2000. In Vojvodina in Serbia same system used electrificator Mihaly Rozsa, but since he stopped to work after certain time, his systems weren't maintained until end of 2019 and early 2020's. Now one electrician from Bečej is maintaining his works and doing electrification with mercury switches and motors with brake by himself

Fall alarms

Work performed in confined space (such as a welder inside a tank) raises special safety concerns. Tilt switches sound an alarm if a worker falls over.

Aircraft attitude indicators/artificial horizons

Electrically driven attitude indicators typically use mercury switches to keep the gyro axis vertical. When the gyro is off vertical, mercury switches trigger torque motors that move the gyro position back to the correct position. (Air driven attitude indicators use a different operating principle.)

Thermostats

Mercury switches were once common in bimetal thermostats. The weight of the movable mercury drop provided some hysteresis by a degree of over-center action. The bimetal spring had to move further to overcome the weight of the mercury, tending to hold it in the open or closed position. The mercury also provided positive on-off switching, and could withstand millions of cycles without contact degradation.

Doorbells

Some old doorbells, for example, the Soviet ZM-1U4, use mercury switches as current interrupters.

Pressure switches

Some pressure switches use a Bourdon tube and a mercury switch. The small force generated by the tube reliably operates the switch.

Vending

Mercury switches are still used in electro-mechanical systems where physical orientation of actuators or rotors is a factor. They are also commonly used in vending machines for tilt alarms that detect when someone tries to rock or tilt the machine to make it vend a product.

Bombs

A tilt switch can trigger a bomb. [8] [9] Mercury tilt switches can be found in some bomb and landmine fuzes, typically in the form of anti-handling devices, for example, a variant of the VS-50 mine.

Toxicity

Since mercury is a toxic heavy metal, devices containing mercury switches must be treated as hazardous waste for disposal. Because it is now RoHS restricted, most modern applications have eliminated it. A metal ball and contact wires can directly replace it, but may require additional circuitry to eliminate switch bounce. Low-precision thermostats use a bimetal strip and a switch contact. Precision thermostats use a thermistor or silicon temperature sensor. Low-cost accelerometers replace the mercury tilt switch in precision applications.

In the United States, the Environmental Protection Agency (EPA) regulates the disposition and release of mercury. [10] Individual states and localities may enact further regulations on the use or disposition of mercury.

See also

Related Research Articles

<span class="mw-page-title-main">Diode</span> Two-terminal electronic component

A diode is a two-terminal electronic component that conducts current primarily in one direction. It has low resistance in one direction and high resistance in the other.

<span class="mw-page-title-main">Relay</span> Electrically-operated switch

A relay is an electrically operated switch. It consists of a set of input terminals for a single or multiple control signals, and a set of operating contact terminals. The switch may have any number of contacts in multiple contact forms, such as make contacts, break contacts, or combinations thereof.

<span class="mw-page-title-main">Switch</span> Electrical component that can break an electrical circuit

In electrical engineering, a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit, interrupting the electric current or diverting it from one conductor to another. The most common type of switch is an electromechanical device consisting of one or more sets of movable electrical contacts connected to external circuits. When a pair of contacts is touching current can pass between them, while when the contacts are separated no current can flow.

<span class="mw-page-title-main">Rectifier</span> Electrical device that converts AC to DC

A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC), which flows in only one direction. The reverse operation is performed by an inverter.

<span class="mw-page-title-main">Nixie tube</span> Electronic numeric display device

A Nixie tube, or cold cathode display, is an electronic device used for displaying numerals or other information using glow discharge.

<span class="mw-page-title-main">Cold cathode</span> Type of electrode and part of cold cathode fluorescent lamp.

A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emission alone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.

<span class="mw-page-title-main">Commutator (electric)</span> Device for changing direction of current

A commutator is a rotary electrical switch in certain types of electric motors and electrical generators that periodically reverses the current direction between the rotor and the external circuit. It consists of a cylinder composed of multiple metal contact segments on the rotating armature of the machine. Two or more electrical contacts called "brushes" made of a soft conductive material like carbon press against the commutator, making sliding contact with successive segments of the commutator as it rotates. The windings on the armature are connected to the commutator segments.

<span class="mw-page-title-main">Thermostat</span> Component which maintains a setpoint temperature

A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

<span class="mw-page-title-main">Miniature snap-action switch</span> Electric switch actuated by very little physical force

A miniature snap-action switch, also trademarked and frequently known as a micro switch or microswitch, is an electric switch that is actuated by very little physical force, through the use of a tipping-point mechanism, sometimes called an "over-center" mechanism.

<span class="mw-page-title-main">Reed switch</span> Electrical switch operated by an applied magnetic field

The reed switch is an electromechanical switch operated by an applied magnetic field. It was invented in 1922 by professor Valentin Kovalenkov at the Petrograd Electrotechnical University, and later evolved at Bell Telephone Laboratories in 1936 by Walter B. Ellwood into the reed relay. In its simplest and most common form, it consists of a pair of ferromagnetic flexible metal contacts in a hermetically sealed glass envelope. The contacts are usually normally open, closing when a magnetic field is present, or they may be normally closed and open when a magnetic field is applied. The switch may be actuated by an electromagnetic coil, making a reed relay, or by bringing a permanent magnet near it. When the magnetic field is removed, the contacts in the reed switch return to their original position. The "reed" is the metal part inside the reed switch envelope that is relatively thin and wide to make it flexible, resembling the reed of a musical instrument. The term "reed" may also include the external wire lead as well as the internal part.

<span class="mw-page-title-main">Bimetallic strip</span> Two-sided strip that coils when heated or cooled

A bimetallic strip is a strip that consists of two strips of different metals which expand at different rates as they are heated. They are used to convert a temperature change into mechanical displacement. The different expansions force the flat strip to bend one way if heated, and in the opposite direction if cooled below its initial temperature. The metal with the higher coefficient of thermal expansion is on the outer side of the curve when the strip is heated and on the inner side when cooled.

<span class="mw-page-title-main">Ignitron</span>

An ignitron is a type of gas-filled tube used as a controlled rectifier and dating from the 1930s. Invented by Joseph Slepian while employed by Westinghouse, Westinghouse was the original manufacturer and owned trademark rights to the name "Ignitron". Ignitrons are closely related to mercury-arc valves but differ in the way the arc is ignited. They function similarly to thyratrons; a triggering pulse to the igniter electrode turns the device "on", allowing a high current to flow between the cathode and anode electrodes. After it is turned on, the current through the anode must be reduced to zero to restore the device to its nonconducting state. They are used to switch high currents in heavy industrial applications.

A motor controller is a device or group of devices that can coordinate in a predetermined manner the performance of an electric motor. A motor controller might include a manual or automatic means for starting and stopping the motor, selecting forward or reverse rotation, selecting and regulating the speed, regulating or limiting the torque, and protecting against overloads and electrical faults. Motor controllers may use electromechanical switching, or may use power electronics devices to regulate the speed and direction of a motor.

<span class="mw-page-title-main">Electric arc</span> Electrical breakdown of a gas that results in an ongoing electrical discharge

An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, which may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

<span class="mw-page-title-main">Mercury-arc valve</span> Type of electrical rectifier with a liquid cathode

A mercury-arc valve or mercury-vapor rectifier or (UK) mercury-arc rectifier is a type of electrical rectifier used for converting high-voltage or high-current alternating current (AC) into direct current (DC). It is a type of cold cathode gas-filled tube, but is unusual in that the cathode, instead of being solid, is made from a pool of liquid mercury and is therefore self-restoring. As a result mercury-arc valves, when used as intended, are far more robust and durable and can carry much higher currents than most other types of gas discharge tube. Some examples have been in continuous service, rectifying 50-ampere currents, for decades.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

<span class="mw-page-title-main">Contactor</span> Electronic circuit element serving as a switch

A contactor is an electrically controlled switch used for switching an electrical power circuit. A contactor is typically controlled by a circuit which has a much lower power level than the switched circuit, such as a 24-volt coil electromagnet controlling a 230-volt motor switch.

<span class="mw-page-title-main">Fan heater</span> Heat producing machine to increase temperature of an enclosed space

A fan heater, also called a blow heater, is a heater that works by using a fan to pass air over a heat source. This heats up the air, which then leaves the heater, warming up the surrounding room. They can heat an enclosed space such as a room faster than a heater without a fan, but like any fan, create a degree of noise.

An infinite switch, simmerstat, energy regulator or infinite controller is a type of switch that allows variable power output of a heating element of an electric stove. It is called "infinite" because its average output is infinitely variable rather than being limited to a few switched levels. It uses a bi-metallic strip conductive connection across terminals that disconnects with increased temperature. As current passes through the bimetal connection, it will heat and deform, breaking the connection and turning off the power. After a short time, the bimetal will cool and reconnect. Infinite switches vary the average power delivered to a device by switching frequently between on and off states. They may be used for situations that are not sensitive to such changes, such as the resistive heating elements in electric stoves and kilns.

<span class="mw-page-title-main">Electromechanics</span> Multidisciplinary field of engineering

In engineering, electromechanics combines processes and procedures drawn from electrical engineering and mechanical engineering. Electromechanics focuses on the interaction of electrical and mechanical systems as a whole and how the two systems interact with each other. This process is especially prominent in systems such as those of DC or AC rotating electrical machines which can be designed and operated to generate power from a mechanical process (generator) or used to power a mechanical effect (motor). Electrical engineering in this context also encompasses electronics engineering.

References

  1. U.S. Patent 1598874.: "Electrical apparatus", filed January 19, 1922.
  2. U.S. Patent 2232626.: "Electric switch ", filed October 7, 1937.
  3. Fraden, Jacob (2004). Handbook of Modern Sensors - Physics, Designs and Applications (3rd Edition). Springer - Verlag. pp. 256–257.
  4. Martin J. Heathcote, The J & P transformer book: a practical technology of the power transformer Newnes, 2007 ISBN   0-7506-8164-0 p.285
  5. David W. Pessen, Industrial automation: circuit design and components, Wiley-IEEE, 1989 ISBN   0-471-60071-7, page 44
  6. United States, Mercury study report to Congress, DIANE Publishing, 1997 ISBN   1-4289-0372-0, page 2-11
  7. Organisation for Economic Co-operation and Development, Instrument mixes for environmental policy OECD Publishing, 2007, ISBN   92-64-01780-1, pg.145
  8. Vallely, Paul (22 February 2002). "The Airey Neave Files" . The Independent. London. Archived from the original on 2022-05-12. Retrieved 12 May 2010.
  9. "1979: Car bomb kills Airey Neave". BBC News. 30 March 1979. Retrieved 26 March 2010.
  10. "Mercury: Laws and regulations". United States Environmental Protection Agency. 2008-04-16. Retrieved 2008-05-30.