Vandal-resistant switch

Last updated
This vandal- and weather-resistant switch is used to request a traffic stop signal Traffic light switch 0823.JPG
This vandal- and weather-resistant switch is used to request a traffic stop signal

Vandal-resistant switches (also referred to as vandal-proof switches) are electrical switches designed to be installed in a location (or device) and application where they may be subject to abuse and attempts to damage them, as in the case of pedestrian crossing switches. Vandal-resistant switches located on devices that are outdoors must be able to withstand extreme temperatures, dust, rain, snow, and ice. Many vandal-resistant switches are intended to be operated by the general public, and must withstand heavy use and even abuse, such as attempts to damage the switch with metal tools. These switches must also resist dirt and moisture.

Contents

Tamper-resistant switches (or tamper-proof switches) are types of vandal-resistant switches which are not intended to be operated except by authorized users. They may control special functions, such as auditing of voting machines, operation of power tools or equipment, enabling of security alarm systems (e.g., arming and disarming), or restocking of vending machines. A very commonly seen tamper-resistant switch is the ignition switch in most motor vehicles.

Vandal-resistant switches are usually protected by the use of robust materials, such as thick stainless steel or heavy-duty plastics. Some tamper-resistant switches are also protected against operation by using other approaches, such as hiding the switches behind a locked or screwed-down door-covered panel, or by requiring a key or passcode before the switch will operate the device. One widely used example of a tamper-proof switch is the ignition system of a standard car; to prevent strangers from joyriding in the car or stealing it, car ignition systems require a key to start the engine.

Mechanical characteristics

Automated Teller Machines (ATMs) use many vandal-resistant switches Bankomat 050421.jpg
Automated Teller Machines (ATMs) use many vandal-resistant switches

Pushbutton vandal-resistant switches are frequently constructed of stainless steel or other durable materials, and are mounted into panels or housing boxes made out of strong materials, such as polycarbonate plastic, aluminium, or stainless steel. In some cases, the housing may be 14 inch (6.4 mm) thick, to protect both the switch and the housing from attempts by vandals to damage the switch or housing using blunt force. The housing for vandal-proof switches is often secured using security screws (which cannot be unscrewed with regular screw drivers). The height of buttons in the panel is often minimized by using flush-mounting, to make it more difficult to pry them out, a design technique used in ATM banking machines that are located outside.

Vandal-resistant switches often need to be water and dust resistant due to their environments. Some types are potted to make them waterproof. The International Electrotechnical Commission has produced a standard, IEC 60529, which categorizes products' degrees of protection from liquids and dust using IP codes. A DIN extension of the IEC standard, DIN 40050-9 further defines Degree of Protection IP 69K as being able to withstand high-pressure washing or steam cleaning. This capability is needed in some particular applications, such as dairy milking machines, and is provided by some manufacturers' products. [1]

Electrical characteristics

Tamper-resistant automotive ignition switches discourage car theft Ignition switch.JPG
Tamper-resistant automotive ignition switches discourage car theft

Vandal-resistant switches are often low-voltage, low current, so-called "signal" types intended to trigger a change in state, perhaps from "off" to "on" and vice versa. The mechanical types often have gold-plated contacts that do not corrode, to allow reliable low-power switching. [2] A few types are capable of switching 120 or 220 V AC power at several amperes, and are better suited to direct switching of the AC power to a device than the gold-plated contact switches. Heavy-duty switches often have silver or silver-plated contacts to handle higher currents. [2]

Many but not all vandal-resistant switches are momentary types; that is to say they only open or close a circuit while being depressed and revert to their inactive state when the button is released. Piezoelectric vandal-resistant switches usually fall into this category, but generally provide a pulse signal rather than staying continuously activated during the time pressure is applied, unlike their mechanical contact-based counterparts. Latching (push-on/push-off)-type vandal-resistant switches with mechanical contacts are also available, and are often used as the power switch for equipment that is used very frequently or which may be subjected to abuse.

Hidden switches

In some cases, such as equipment used in schools, community centers, or other public places, the equipment is designed so that some or all of the switches are hidden behind a locked cover. Some public address systems are sold in tamper-resistant designs that make it harder for unauthorized members of the public to activate the system or change the settings. The switches are at the rear of the unit; only LED lights are on the front of the panel. When the unit is rack-mounted into a wall or rack unit, this means that only official personnel (who are able to access the back of the panel) can change the settings or use the unit. Another variant on this design is to cover the switches with a locked panel. In some cases, such as the sound system in a bar or club, the locked cover may be made from transparent plexiglass, so that the sound engineer can verify the sound system settings and switches (yet at the same time, the locked panel prevents mischief-minded club patrons from tampering or altering the amplifier or equalizer settings).

In some cases, the switches are placed behind a door that is secured with a screw but not locked with a key; they are out of sight and thus less likely to be interfered with. Screw-on door-covered switches are used on public address equipment that is intended to be rented out to non-professional users. The switches for some settings, such as the on-off switch for the speaker-protection limiter or a low-pitch "rumble filter" (designed to protect speakers from very low sounds), may be hidden behind a screwed-on door or metal plate.

Screwed-on covers are also widely used on children's electric and electronic toys, so that a parent can control certain settings such as the maximum speed of a toy electric ride-on car or the maximum volume of a video game.

Locked switches

Tamper-resistant switch used for corridor and restroom lighting controls in public buildings Locking switch.jpg
Tamper-resistant switch used for corridor and restroom lighting controls in public buildings

Where lighting circuits must not be accidentally switched off (for example, school corridors), a vandal-resistant switch may be installed. These require a simple key or tool to operate, and thus discourage casual or accidental operation of the switch. [3] [4]

In some devices, the switch is built into a keyed lock mechanism, which prevents unauthorized use of the device. In this type of vandal-proof system, when the key is turned in the lock, the user can turn the equipment on. Some mobility scooters for disabled people have a locked "on-off" switch, to prevent the scooter from being driven away by vandals or joyriders while it is parked in a public place. A variant of this design is to use a computerized keypad and a secret code that activates and deactivates the switches.

The circular saw systems in home improvement stores, such as Home Depot, use a combination code keypad to prevent store patrons from using the circular saw. The power tool cannot be operated until an authorized user (e.g. a trained store employee) enters a code into the keypad.

Indicators

Vandal-resistant switches (like some other types of switches) can incorporate indicator lights or LEDs to indicate circuit activation, deactivation or fault conditions. LEDs are used for this purpose in this style switch, being available in several colors and operating at low voltages. Single and ring-shaped groups of LEDs can thus show the current status of equipment or machines. In some products the LEDs can have two colors to show multiple status conditions, such as On (green) / Off (extinguished) / Fault (red).

However, many switches indicate their status by purely mechanical means, such as by the position of a toggle handle, or the visibility of a brightly painted indicator flap.

Non-mechanical types

Although mechanical contact-based switches are most commonly used for general purpose electrical switching, switches that have no moving parts are generally longer-lived. Piezo and capacitance switches are the two most popular non-mechanical switch types currently available. One advantage they have over mechanical contact-based switches is that they have no moving parts to wear out. This makes them capable of lasting for tens of millions of operations. [1]

Glass reed switches use a thin metal "reed" that bends when a magnet is brought near it; since the entire unit is sealed in a glass tube, this helps protect the switch from moisture and dust that can damage regular switches.

Applications

Traffic signal switches in a heavy-duty enclosure Manuelle Ampelschaltung02.jpg
Traffic signal switches in a heavy-duty enclosure

See also

Related Research Articles

<span class="mw-page-title-main">Keyboard technology</span> Hardware technology of keyboards

The technology of computer keyboards includes many elements. Many different keyboard technologies have been developed for consumer demands and optimized for industrial applications. The standard full-size (100%) computer alphanumeric keyboard typically uses 101 to 105 keys; keyboards integrated in laptop computers are typically less comprehensive.

<span class="mw-page-title-main">Relay</span> Electrically-operated switch

A relay is an electrically operated switch. It consists of a set of input terminals for a single or multiple control signals, and a set of operating contact terminals. The switch may have any number of contacts in multiple contact forms, such as make contacts, break contacts, or combinations thereof.

<span class="mw-page-title-main">Switch</span> Electrical component that can break an electrical circuit

In electrical engineering, a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit, interrupting the electric current or diverting it from one conductor to another. The most common type of switch is an electromechanical device consisting of one or more sets of movable electrical contacts connected to external circuits. When a pair of contacts is touching current can pass between them, while when the contacts are separated no current can flow.

<span class="mw-page-title-main">Electrical connector</span> Device used to join electrical conductors

Components of an electrical circuit are electrically connected if an electric current can run between them through an electrical conductor. An electrical connector is an electromechanical device used to create an electrical connection between parts of an electrical circuit, or between different electrical circuits, thereby joining them into a larger circuit.

<span class="mw-page-title-main">Light switch</span> Type of switch in electrical wiring

In electrical wiring, a light switch is a switch most commonly used to operate electric lights, permanently connected equipment, or electrical outlets. Portable lamps such as table lamps may have a light switch mounted on the socket, base, or in-line with the cord. Manually operated on/off switches may be substituted by dimmer switches that allow controlling the brightness of lamps as well as turning them on or off, time-controlled switches, occupancy-sensing switches, and remotely controlled switches and dimmers. Light switches are also found in flashlights, vehicles, and other devices.

<span class="mw-page-title-main">Closure (container)</span> Devices and techniques used to close or seal a bottle, jug, jar, tube, can, etc.

A closure is a device used to close or seal a container such as a bottle, jug, jar, tube, or can. A closure may be a cap, cover, lid, plug, liner, or the like. The part of the container to which the closure is applied is called the finish.

<span class="mw-page-title-main">Safe-cracking</span> Process of opening a safe without either the combination or the key

Safe-cracking is the process of opening a safe without either the combination or the key.

<span class="mw-page-title-main">Security alarm</span> System that detects unauthorised entry

A security alarm is a system designed to detect intrusions, such as unauthorized entry, into a building or other areas, such as a home or school. Security alarms protect against burglary (theft) or property damage, as well as against intruders. Examples include personal systems, neighborhood security alerts, car alarms, and prison alarms.

<span class="mw-page-title-main">Smart key</span> Electronic access and authorization system

A smart key is an electronic access and authorization system that is available either as standard equipment or an option in several car designs. It was developed by Siemens in 1995 and introduced by Mercedes-Benz under the name "Keyless-Go" in 1998 on the W220 S-Class, after the design patent was filed by Daimler-Benz on May 17, 1997.

<span class="mw-page-title-main">Manual fire alarm activation</span> Button or lever to activate fire alarms

Manual fire alarm activation is the process of triggering a fire alarm through a call point, pull station, or other device. This usually causes the alarm to sound the evacuation signal for the relevant building or zone. Manual fire alarm activation requires human intervention, as distinct from automatic fire alarm activation such as that provided through the use of heat detectors and smoke detectors. It is, however, possible for call points/pull stations to be used in conjunction with automatic detection as part of the overall fire detection and alarm system. Systems in completed buildings tend to be wired in and include a control panel. Wireless activators are common during construction.

<span class="mw-page-title-main">Electronic lock</span> Locking device which operates by means of electric current

An electronic lock is a locking device which operates by means of electric current. Electric locks are sometimes stand-alone with an electronic control assembly mounted directly to the lock. Electric locks may be connected to an access control system, the advantages of which include: key control, where keys can be added and removed without re-keying the lock cylinder; fine access control, where time and place are factors; and transaction logging, where activity is recorded. Electronic locks can also be remotely monitored and controlled, both to lock and to unlock.

<span class="mw-page-title-main">Interlock (engineering)</span> Feature that makes two mechanisms mutually interdependent

An interlock is a feature that makes the state of two mechanisms or functions mutually dependent. It may consist of any electrical or mechanical devices, or systems. In most applications, an interlock is used to help prevent any damage to the machine or to the operator handling the machine. For example, elevators are equipped with an interlock that prevents the moving elevator from opening its doors and prevents the stationary elevator from moving.

<span class="mw-page-title-main">Tamperproofing</span> Security methodology

Tamperproofing, conceptually, is a methodology used to hinder, deter or detect unauthorised access to a device or circumvention of a security system. Since any device or system can be foiled by a person with sufficient knowledge, equipment, and time, the term "tamperproof" is a misnomer unless some limitations on the tampering party's resources is explicit or assumed.

<span class="mw-page-title-main">NEMA connector</span> Power plugs and receptacles used in North America and some other regions

NEMA connectors are power plugs and sockets used for AC mains electricity in North America and other countries that use the standards set by the US National Electrical Manufacturers Association. NEMA wiring devices are made in current ratings from 15 to 60 amperes (A), with voltage ratings from 125 to 600 volts (V). Different combinations of contact blade widths, shapes, orientations, and dimensions create non-interchangeable connectors that are unique for each combination of voltage, electric current carrying capacity, and grounding system.

<span class="mw-page-title-main">Immobiliser</span> Motor vehicle anti-theft device

An immobiliser or immobilizer is an electronic security device fitted to a motor vehicle that prevents the engine from being started unless the correct key is present. This prevents the vehicle from being "hot wired" after entry has been achieved and thus reduces motor vehicle theft. Research shows that the uniform application of immobilisers reduced the rate of car theft by 40%.

<span class="mw-page-title-main">Pressure switch</span> Form of switch that operates an electrical contact

A pressure switch is a form of switch that operates an electrical contact when a certain set fluid pressure has been reached on its input. The switch may be designed to make contact either on pressure rise or on pressure fall. Pressure switches are widely used in industry to automatically supervise and control systems that use pressurized fluids.

Silicone rubber keypads are used extensively in both consumer and industrial electronic products as a low cost and reliable switching solution.

<span class="mw-page-title-main">Computer keyboard</span> Data input device

A computer keyboard is a peripheral input device modeled after the typewriter keyboard which uses an arrangement of buttons or keys to act as mechanical levers or electronic switches. Replacing early punched cards and paper tape technology, interaction via teleprinter-style keyboards have been the main input method for computers since the 1970s, supplemented by the computer mouse since the 1980s.

<span class="mw-page-title-main">Cam switch</span> Switch whose contacts are opened and closed by rotating cams

Cam switches are mainly used within the low voltage range. On a shaft, switching cams are made of abrasion-resistant conductive material. By rotating the shaft, the contacts are opened or closed by the cams. Often, a plurality of cams are seated on a shaft, which simultaneously switch or switch several pairs of contacts.

References

  1. 1 2 "Piezo switches are sealed to the highest levels"
  2. 1 2 "General Electric Contact Materials". Electrical Contact Catalog (Material Catalog). Tanaka Precious Metals. 2005. Archived from the original on 2007-01-01. Retrieved 2008-04-18.
  3. "Low-Cost Security Measures for School Facilities" (PDF). National Clearinghouse for Educational Facilities. Retrieved 1 September 2014.
  4. "Product Bulletin for 30 Amp AC Toggle Switches". Leviton. Retrieved 1 September 2014.