A pressure switch is a form of switch that operates an electrical contact when a certain set fluid pressure has been reached on its input. The switch may be designed to make contact either on pressure rise or on pressure fall. Pressure switches are widely used in industry to automatically supervise and control systems that use pressurized fluids.
Another type of pressure switch detects mechanical force; for example, a pressure-sensitive mat is used to automatically open doors on commercial buildings. Such sensors are also used in security alarm applications such as pressure sensitive floors.
A pressure switch for sensing fluid pressure contains a capsule, bellows, Bourdon tube, diaphragm or piston element that deforms or displaces proportionally to the applied pressure. The resulting motion is applied, either directly or through amplifying levers, to a set of switch contacts. Since pressure may be changing slowly and contacts should operate quickly, some kind of over-center mechanism such as a miniature snap-action switch is used to ensure quick operation of the contacts. One sensitive type of pressure switch uses mercury switches mounted on a Bourdon tube; the shifting weight of the mercury provides a useful over-center characteristic.
The pressure switch may be adjustable, by moving the contacts or adjusting tension in a counterbalance spring. Industrial pressure switches may have a calibrated scale and pointer to show the set point of the switch. A pressure switch will have a hysteresis, that is, a differential range around its setpoint, known as the switch's deadband, inside which small changes of pressure do not influence the state of the contacts. Some types allow adjustment of the differential. [1]
The pressure-sensing element of a pressure switch may be arranged to respond to the difference of two pressures. Such switches are useful when the difference is significant, for example, to detect a clogged filter in a water supply system. The switches must be designed to respond only to the difference and not to false-operate for changes in the common mode pressure.
The contacts of the pressure switch may be rated a few tenths of an ampere to around 15 amperes, with smaller ratings found on more sensitive switches. Often a pressure switch will operate a relay or other control device, but some types can directly control small electric motors or other loads.
Since the internal parts of the switch are exposed to the process fluid, they must be chosen to balance strength and life expectancy against compatibility with process fluids. For example, rubber diaphragms are commonly used in contact with water, but would quickly degrade if used in a system containing mineral oil.
Switches designed for use in hazardous areas with flammable gas have enclosure to prevent an arc at the contacts from igniting the surrounding gas. Switch enclosures may also be required to be weatherproof, corrosion resistant, or submersible.
An electronic pressure switch incorporates some variety of pressure transducer (strain gauge, capacitive element, or other) and an internal circuit to compare the measured pressure to a set point. Such devices may provide improved repeatability, accuracy and precision over a mechanical switch.
Uses of pneumatic pressure switches include:
Hydraulic pressure switches have various uses in automobiles, for example, to warn if the engine's oil pressure falls below a safe level, or to control automatic transmission torque converter lock-up. Prior to the 1960s, a pressure switch was used in the hydraulic braking circuit to control power to the brake lights; more recent automobiles use a switch directly activated by the brake pedal.
In dust control systems (bag filter), a pressure switch is mounted on the header which will raise an alarm when air pressure in the header is less than necessary. A differential pressure switch may be installed across a filter element to sense increased pressure drop, indicating the need for filter cleaning or replacement.
A pressure sensitive mat provides a contact signal when force is applied anywhere within the area of the mat. Some mats provide a single signal, while others can resolve the position of the applied force within the mat. Pressure sensitive mats can be used to operate electrically operated doors, or as part of an interlock system to ensure machine operators are clear of dangerous areas of a process before it operates. Pressure sensitive mats can be used to detect persons walking over a particular point, as part of a security alarm system or to count attendance, or for other purposes.
Pressure measurement is the measurement of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges,vacuum gauges or compound gauges. The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.
In electrical engineering, a switch is an electrical component that can disconnect or connect the conducting path in an electrical circuit, interrupting the electric current or diverting it from one conductor to another. The most common type of switch is an electromechanical device consisting of one or more sets of movable electrical contacts connected to external circuits. When a pair of contacts is touching current can pass between them, while when the contacts are separated no current can flow.
In engineering, a fail-safe is a design feature or practice that, in the event of a failure of the design feature, inherently responds in a way that will cause minimal or no harm to other equipment, to the environment or to people. Unlike inherent safety to a particular hazard, a system being "fail-safe" does not mean that failure is naturally inconsequential, but rather that the system's design prevents or mitigates unsafe consequences of the system's failure. If and when a "fail-safe" system fails, it remains at least as safe as it was before the failure. Since many types of failure are possible, failure mode and effects analysis is used to examine failure situations and recommend safety design and procedures.
Instrumentation is a collective term for measuring instruments, used for indicating, measuring, and recording physical quantities. It is also a field of study about the art and science about making measurement instruments, involving the related areas of metrology, automation, and control theory. The term has its origins in the art and science of scientific instrument-making.
A Hall effect sensor is any sensor incorporating one or more Hall elements, each of which produces a voltage proportional to one axial component of the magnetic field vector B using the Hall effect.
A mercury switch is an electrical switch that opens and closes a circuit when a small amount of the liquid metal mercury connects metal electrodes to close the circuit. There are several different basic designs but they all share the common design strength of non-eroding switch contacts.
The reed switch is an electromechanical switch operated by an applied magnetic field. It was invented in 1922 by professor Valentin Kovalenkov at the Petrograd Electrotechnical University, and later evolved at Bell Telephone Laboratories in 1936 by Walter B. Ellwood into the reed relay. In its simplest and most common form, it consists of a pair of ferromagnetic flexible metal contacts in a hermetically sealed glass envelope. The contacts are usually normally open, closing when a magnetic field is present, or they may be normally closed and open when a magnetic field is applied. The switch may be actuated by an electromagnetic coil, making a reed relay, or by bringing a permanent magnet near it. When the magnetic field is removed, the contacts in the reed switch return to their original position. The "reed" is the metal part inside the reed switch envelope that is relatively thin and wide to make it flexible, resembling the reed of a musical instrument. The term "reed" may also include the external wire lead as well as the internal part.
Fluid power is the use of fluids under pressure to generate, control, and transmit power. Fluid power is conventionally subdivided into hydraulics and pneumatics. Although steam is also a fluid, steam power is usually classified separately from fluid power. Compressed-air and water-pressure systems were once used to transmit power from a central source to industrial users over extended geographic areas; fluid power systems today are usually within a single building or mobile machine.
Hydropneumatic suspension is a type of motor vehicle suspension system, designed by Paul Magès, invented by Citroën, and fitted to Citroën cars, as well as being used under licence by other car manufacturers. Similar systems are also widely used on modern tanks and other large military vehicles. The suspension was referred to as Suspension oléopneumatique in early literature, pointing to oil and air as its main components.
A passive infrared sensor is an electronic sensor that measures infrared (IR) light radiating from objects in its field of view. They are most often used in PIR-based motion detectors. PIR sensors are commonly used in security alarms and automatic lighting applications.
Level sensors detect the level of liquids and other fluids and fluidized solids, including slurries, granular materials, and powders that exhibit an upper free surface. Substances that flow become essentially horizontal in their containers because of gravity whereas most bulk solids pile at an angle of repose to a peak. The substance to be measured can be inside a container or can be in its natural form. The level measurement can be either continuous or point values. Continuous level sensors measure level within a specified range and determine the exact amount of substance in a certain place, while point-level sensors only indicate whether the substance is above or below the sensing point. Generally the latter detect levels that are excessively high or low.
In electric power systems and industrial automation, ANSI Device Numbers can be used to identify equipment and devices in a system such as relays, circuit breakers, or instruments. The device numbers are enumerated in ANSI/IEEE Standard C37.2 Standard for Electrical Power System Device Function Numbers, Acronyms, and Contact Designations.
Brake-by-wire technology in the automotive industry is the ability to control brakes through electronic means, without a mechanical connection that transfers force to the physical braking system from a driver input apparatus such as a pedal or lever.
A valve actuator is the mechanism for opening and closing a valve. Manually operated valves require someone in attendance to adjust them using a direct or geared mechanism attached to the valve stem. Power-operated actuators, using gas pressure, hydraulic pressure or electricity, allow a valve to be adjusted remotely, or allow rapid operation of large valves. Power-operated valve actuators may be the final elements of an automatic control loop which automatically regulates some flow, level or other process. Actuators may be only to open and close the valve, or may allow intermediate positioning; some valve actuators include switches or other ways to remotely indicate the position of the valve.
Metal bellows are elastic vessels that can be compressed when pressure is applied to the outside of the vessel, or extended under vacuum. When the pressure or vacuum is released, the bellows will return to its original shape, provided the material has not been stressed past its yield strength. They are used both for their ability to deform under pressure and to provide a hermetic seal that allows movement.
Pipeline leak detection is used to determine if a leak has occurred in systems which contain liquids and gases. Methods of detection include hydrostatic testing, tracer-gas leak testing, infrared, laser technology, and acoustic or sonar technologies. Some technologies are used only during initial pipeline installation and commissioning, while other technologies can be used for continuous monitoring during service.
Capacitors have many uses in electronic and electrical systems. They are so ubiquitous that it is rare that an electrical product does not include at least one for some purpose. Capacitors allow only AC signals to pass when they are charged blocking DC signals. The main components of filters are capacitors. Capacitors have the ability to connect one circuit segment to another. Capacitors are used by Dynamic Random Access Memory (DRAM) devices to represent binary information as bits.
Instrumentation is used to monitor and control the process plant in the oil, gas and petrochemical industries. Instrumentation ensures that the plant operates within defined parameters to produce materials of consistent quality and within the required specifications. It also ensures that the plant is operated safely and acts to correct out of tolerance operation and to automatically shut down the plant to prevent hazardous conditions from occurring. Instrumentation comprises sensor elements, signal transmitters, controllers, indicators and alarms, actuated valves, logic circuits and operator interfaces.