Optical transistor

Last updated

An optical transistor, also known as an optical switch or a light valve, is a device that switches or amplifies optical signals. Light occurring on an optical transistor's input changes the intensity of light emitted from the transistor's output while output power is supplied by an additional optical source. Since the input signal intensity may be weaker than that of the source, an optical transistor amplifies the optical signal. The device is the optical analog of the electronic transistor that forms the basis of modern electronic devices. Optical transistors provide a means to control light using only light and has applications in optical computing and fiber-optic communication networks. Such technology has the potential to exceed the speed of electronics[ citation needed ], while conserving more power. The fastest demonstrated all-optical switching signal is 900 attoseconds (attosecond =10^-18 second), which paves the way to develop ultrafast optical transistors. [1]

Contents

Since photons inherently do not interact with each other, an optical transistor must employ an operating medium to mediate interactions. This is done without converting optical to electronic signals as an intermediate step. Implementations using a variety of operating mediums have been proposed and experimentally demonstrated. However, their ability to compete with modern electronics is currently limited.

Applications

Optical transistors could be used to improve the performance of fiber-optic communication networks. Although fiber-optic cables are used to transfer data, tasks such as signal routing are done electronically. This requires optical-electronic-optical conversion, which form bottlenecks. In principle, all-optical digital signal processing and routing is achievable using optical transistors arranged into photonic integrated circuits. [2] The same devices could be used to create new types of optical amplifiers to compensate for signal attenuation along transmission lines.

A more elaborate application of optical transistors is the development of an optical digital computer in which signals are photonic (i.e., light-transmitting media) rather than electronic (wires). Further, optical transistors that operate using single photons could form an integral part of quantum information processing where they can be used to selectively address individual units of quantum information, known as qubits.

Optical transistors could in theory be impervious to the high radiation of space and extraterrestrial planets, unlike electronic transistors which suffer from Single-event upset.

Comparison with electronics

The most commonly argued case for optical logic is that optical transistor switching times can be much faster than in conventional electronic transistors. This is due to the fact that the speed of light in an optical medium is typically much faster than the drift velocity of electrons in semiconductors.

Optical transistors can be directly linked to fiber-optic cables whereas electronics requires coupling via photodetectors and LEDs or lasers. The more natural integration of all-optical signal processors with fiber-optics would reduce the complexity and delay in the routing and other processing of signals in optical communication networks.

It remains questionable whether optical processing can reduce the energy required to switch a single transistor to be less than that for electronic transistors. To realistically compete, transistors require a few tens of photons per operation. It is clear, however, that this is achievable in proposed single-photon transistors [3] [4] for quantum information processing.

Perhaps the most significant advantage of optical over electronic logic is reduced power consumption. This comes from the absence of capacitance in the connections between individual logic gates. In electronics, the transmission line needs to be charged to the signal voltage. The capacitance of a transmission line is proportional to its length and it exceeds the capacitance of the transistors in a logic gate when its length is equal to that of a single gate. The charging of transmission lines is one of the main energy losses in electronic logic. This loss is avoided in optical communication where only enough energy to switch an optical transistor at the receiving end must be transmitted down a line. This fact has played a major role in the uptake of fiber optics for long-distance communication but is yet to be exploited at the microprocessor level.

Besides the potential advantages of higher speed, lower power consumption and high compatibility with optical communication systems, optical transistors must satisfy a set of benchmarks before they can compete with electronics. [5] No single design has yet satisfied all these criteria whilst outperforming speed and power consumption of state of the art electronics.

The criteria include:

Implementations

Several schemes have been proposed to implement all-optical transistors. In many cases, a proof of concept has been experimentally demonstrated. Among the designs are those based on:

See also

Related Research Articles

<span class="mw-page-title-main">Photonics</span> Technical applications of optics

Photonics is a branch of optics that involves the application of generation, detection, and manipulation of light in form of photons through emission, transmission, modulation, signal processing, switching, amplification, and sensing. Photonics is closely related to quantum electronics, where quantum electronics deals with the theoretical part of it while photonics deal with its engineering applications. Though covering all light's technical applications over the whole spectrum, most photonic applications are in the range of visible and near-infrared light. The term photonics developed as an outgrowth of the first practical semiconductor light emitters invented in the early 1960s and optical fibers developed in the 1970s.

This is a timeline of quantum computing.

<span class="mw-page-title-main">Polariton</span> Quasiparticles arising from EM wave coupling

In physics, polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation. The polariton is a bosonic quasiparticle, and should not be confused with the polaron, which is an electron plus an attached phonon cloud.

<span class="mw-page-title-main">Photonic crystal</span> Periodic optical nanostructure that affects the motion of photons

A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.

Quantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a machine able to perform quantum circuits on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.

Optical computing or photonic computing uses light waves produced by lasers or incoherent sources for data processing, data storage or data communication for computing. For decades, photons have shown promise to enable a higher bandwidth than the electrons used in conventional computers.

<span class="mw-page-title-main">Silicon photonics</span> Photonic systems which use silicon as an optical medium

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what is known as silicon on insulator (SOI).

A spaser or plasmonic laser is a type of laser which aims to confine light at a subwavelength scale far below Rayleigh's diffraction limit of light, by storing some of the light energy in electron oscillations called surface plasmon polaritons. The phenomenon was first described by David J. Bergman and Mark Stockman in 2003. The word spaser is an acronym for "surface plasmon amplification by stimulated emission of radiation". The first such devices were announced in 2009 by three groups: a 44-nanometer-diameter nanoparticle with a gold core surrounded by a dyed silica gain medium created by researchers from Purdue, Norfolk State and Cornell universities, a nanowire on a silver screen by a Berkeley group, and a semiconductor layer of 90 nm surrounded by silver pumped electrically by groups at the Eindhoven University of Technology and at Arizona State University. While the Purdue-Norfolk State-Cornell team demonstrated the confined plasmonic mode, the Berkeley team and the Eindhoven-Arizona State team demonstrated lasing in the so-called plasmonic gap mode. In 2018, a team from Northwestern University demonstrated a tunable nanolaser that can preserve its high mode quality by exploiting hybrid quadrupole plasmons as an optical feedback mechanism.

<span class="mw-page-title-main">Yoshihisa Yamamoto (scientist)</span> Japanese applied physicist (born 1950)

Yoshihisa Yamamoto is the director of Physics & Informatics Laboratories, NTT Research, Inc. He is also Professor (Emeritus) at Stanford University and National Institute of Informatics (Tokyo).

A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.

A single-photon source is a light source that emits light as single particles or photons. Single-photon sources are distinct from coherent light sources (lasers) and thermal light sources such as incandescent light bulbs. The Heisenberg uncertainty principle dictates that a state with an exact number of photons of a single frequency cannot be created. However, Fock states can be studied for a system where the electric field amplitude is distributed over a narrow bandwidth. In this context, a single-photon source gives rise to an effectively one-photon number state.

In physics, the exciton–polariton is a type of polariton; a hybrid light and matter quasiparticle arising from the strong coupling of the electromagnetic dipolar oscillations of excitons and photons. Because light excitations are observed classically as photons, which are massless particles, they do not therefore have mass, like a physical particle. This property makes them a quasiparticle.

<span class="mw-page-title-main">Jaynes–Cummings–Hubbard model</span> Model in quantum optics

The Jaynes–Cummings–Hubbard (JCH) model is a many-body quantum system modeling the quantum phase transition of light. As the name suggests, the Jaynes–Cummings–Hubbard model is a variant on the Jaynes–Cummings model; a one-dimensional JCH model consists of a chain of N coupled single-mode cavities, each with a two-level atom. Unlike in the competing Bose–Hubbard model, Jaynes–Cummings–Hubbard dynamics depend on photonic and atomic degrees of freedom and hence require strong-coupling theory for treatment. One method for realizing an experimental model of the system uses circularly-linked superconducting qubits.

Photonic molecules are a form of matter in which photons bind together to form "molecules". They were first predicted in 2007. Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". In an alternative definition, photons confined to two or more coupled optical cavities also reproduce the physics of interacting atomic energy levels, and have been termed as photonic molecules.

Bose–Einstein condensation can occur in quasiparticles, particles that are effective descriptions of collective excitations in materials. Some have integer spins and can be expected to obey Bose–Einstein statistics like traditional particles. Conditions for condensation of various quasiparticles have been predicted and observed. The topic continues to be an active field of study.

<span class="mw-page-title-main">Plasmonics</span>

Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing optical devices, and finds applications in sensing, microscopy, optical communications, and bio-photonics.

Integrated quantum photonics, uses photonic integrated circuits to control photonic quantum states for applications in quantum technologies. As such, integrated quantum photonics provides a promising approach to the miniaturisation and scaling up of optical quantum circuits. The major application of integrated quantum photonics is Quantum technology:, for example quantum computing, quantum communication, quantum simulation, quantum walks and quantum metrology.

Bose–Einstein condensation of polaritons is a growing field in semiconductor optics research, which exhibits spontaneous coherence similar to a laser, but through a different mechanism. A continuous transition from polariton condensation to lasing can be made similar to that of the crossover from a Bose–Einstein condensate to a BCS state in the context of Fermi gases. Polariton condensation is sometimes called “lasing without inversion”.

A quantum dot single-photon source is based on a single quantum dot placed in an optical cavity. It is an on-demand single-photon source. A laser pulse can excite a pair of carriers known as an exciton in the quantum dot. The decay of a single exciton due to spontaneous emission leads to the emission of a single photon. Due to interactions between excitons, the emission when the quantum dot contains a single exciton is energetically distinct from that when the quantum dot contains more than one exciton. Therefore, a single exciton can be deterministically created by a laser pulse and the quantum dot becomes a nonclassical light source that emits photons one by one and thus shows photon antibunching. The emission of single photons can be proven by measuring the second order intensity correlation function. The spontaneous emission rate of the emitted photons can be enhanced by integrating the quantum dot in an optical cavity. Additionally, the cavity leads to emission in a well-defined optical mode increasing the efficiency of the photon source.

References

  1. Hui, Dandan; Alqattan, Husain; Zhang, Simin; Pervak, Vladimir; Chowdhury, Enam; Hassan, Mohammed Th. (2023-02-24). "Ultrafast optical switching and data encoding on synthesized light fields". Science Advances. 9 (8): eadf1015. doi:10.1126/sciadv.adf1015. ISSN   2375-2548. PMC   9946343 . PMID   36812316.
  2. Jin, C.-Y.; Wada, O. (March 2014). "Photonic switching devices based on semiconductor nano-structures". Journal of Physics D. 47 (13): 133001. arXiv: 1308.2389 . Bibcode:2014JPhD...47m3001J. doi:10.1088/0022-3727/47/13/133001. S2CID   118513312.
  3. Neumeier, L.; Leib, M.; Hartmann, M. J. (2013). "Single-Photon Transistor in Circuit Quantum Electrodynamics". Physical Review Letters. 111 (6): 063601. arXiv: 1211.7215 . Bibcode:2013PhRvL.111f3601N. doi:10.1103/PhysRevLett.111.063601. PMID   23971573. S2CID   29256835.
  4. Hong, F. Y.; Xiong, S. J. (2008). "Single-photon transistor using microtoroidal resonators". Physical Review A. 78 (1): 013812. Bibcode:2008PhRvA..78a3812H. doi:10.1103/PhysRevA.78.013812.
  5. Miller, D. A. B. (2010). "Are optical transistors the logical next step?" (PDF). Nature Photonics. 4 (1): 3–5. Bibcode:2010NaPho...4....3M. doi: 10.1038/nphoton.2009.240 .
  6. Chen, W.; Beck, K. M.; Bucker, R.; Gullans, M.; Lukin, M. D.; Tanji-Suzuki, H.; Vuletic, V. (2013). "All-Optical Switch and Transistor Gated by One Stored Photon". Science. 341 (6147): 768–70. arXiv: 1401.3194 . Bibcode:2013Sci...341..768C. doi:10.1126/science.1238169. PMID   23828886. S2CID   6641361.
  7. Clader, B. D.; Hendrickson, S. M. (2013). "Microresonator-based all-optical transistor". Journal of the Optical Society of America B. 30 (5): 1329. arXiv: 1210.0814 . Bibcode:2013JOSAB..30.1329C. doi:10.1364/JOSAB.30.001329. S2CID   119220800.
  8. Gorniaczyk, H.; Tresp, C.; Schmidt, J.; Fedder, H.; Hofferberth, S. (2014). "Single-Photon Transistor Mediated by Interstate Rydberg Interactions". Physical Review Letters. 113 (5): 053601. arXiv: 1404.2876 . Bibcode:2014PhRvL.113e3601G. doi:10.1103/PhysRevLett.113.053601. PMID   25126918. S2CID   20939989.
  9. Tiarks, D.; Baur, S.; Schneider, K.; Dürr, S.; Rempe, G. (2014). "Single-Photon Transistor Using a Förster Resonance". Physical Review Letters. 113 (5): 053602. arXiv: 1404.3061 . Bibcode:2014PhRvL.113e3602T. doi:10.1103/PhysRevLett.113.053602. PMID   25126919. S2CID   14870149.
  10. Andreakou, P.; Poltavtsev, S. V.; Leonard, J. R.; Calman, E. V.; Remeika, M.; Kuznetsova, Y. Y.; Butov, L. V.; Wilkes, J.; Hanson, M.; Gossard, A. C. (2014). "Optically controlled excitonic transistor". Applied Physics Letters. 104 (9): 091101. arXiv: 1310.7842 . Bibcode:2014ApPhL.104i1101A. doi:10.1063/1.4866855. S2CID   5556763.
  11. Kuznetsova, Y. Y.; Remeika, M.; High, A. A.; Hammack, A. T.; Butov, L. V.; Hanson, M.; Gossard, A. C. (2010). "All-optical excitonic transistor". Optics Letters. 35 (10): 1587–9. Bibcode:2010OptL...35.1587K. doi:10.1364/OL.35.001587. PMID   20479817.
  12. Ballarini, D.; De Giorgi, M.; Cancellieri, E.; Houdré, R.; Giacobino, E.; Cingolani, R.; Bramati, A.; Gigli, G.; Sanvitto, D. (2013). "All-optical polariton transistor". Nature Communications. 4: 1778. arXiv: 1201.4071 . Bibcode:2013NatCo...4.1778B. doi:10.1038/ncomms2734. PMID   23653190. S2CID   11160378.
  13. Arkhipkin, V. G.; Myslivets, S. A. (2013). "All-optical transistor using a photonic-crystal cavity with an active Raman gain medium". Physical Review A. 88 (3): 033847. Bibcode:2013PhRvA..88c3847A. doi:10.1103/PhysRevA.88.033847.
  14. Jin, C.-Y.; Johne, R.; Swinkels, M.; Hoang, T.; Midolo, L.; van Veldhoven, P.J.; Fiore, A. (Nov 2014). "Ultrafast non-local control of spontaneous emission". Nature Nanotechnology. 9 (11): 886–890. arXiv: 1311.2233 . Bibcode:2014NatNa...9..886J. doi:10.1038/nnano.2014.190. PMID   25218324. S2CID   28467862.
  15. Piccione, B.; Cho, C. H.; Van Vugt, L. K.; Agarwal, R. (2012). "All-optical active switching in individual semiconductor nanowires". Nature Nanotechnology. 7 (10): 640–5. Bibcode:2012NatNa...7..640P. doi:10.1038/nnano.2012.144. PMID   22941404.
  16. Varghese, L. T.; Fan, L.; Wang, J.; Gan, F.; Wang, X.; Wirth, J.; Niu, B.; Tansarawiput, C.; Xuan, Y.; Weiner, A. M.; Qi, M. (2012). "A Silicon Optical Transistor". Frontiers in Optics 2012/Laser Science XXVIII. Vol. 2012. pp. FW6C.FW66. doi:10.1364/FIO.2012.FW6C.6. ISBN   978-1-55752-956-5. PMC   5269724 . PMID   28133636.{{cite book}}: |journal= ignored (help)
  17. Volz, J.; Rauschenbeutel, A. (2013). "Triggering an Optical Transistor with One Photon". Science. 341 (6147): 725–6. Bibcode:2013Sci...341..725V. doi:10.1126/science.1242905. PMID   23950521. S2CID   35684657.
  18. Buchmann, A.; Hoberg, C.; Novelli, F. (2022). "An ultra-fast liquid switch for terahertz radiation". APL Photonics. 7 (121302): 121302. Bibcode:2022APLP....7l1302B. doi: 10.1063/5.0130236 .