An optical microcavity or microresonator is a structure formed by reflecting faces on the two sides of a spacer layer or optical medium, or by wrapping a waveguide in a circular fashion to form a ring. The former type is a standing wave cavity, and the latter is a traveling wave cavity. The name microcavity stems from the fact that it is often only a few micrometers thick, the spacer layer sometimes even in the nanometer range. As with common lasers, this forms an optical cavity or optical resonator, allowing a standing wave to form inside the spacer layer or a traveling wave that goes around in the ring.
The fundamental difference between a conventional optical cavity and microcavities is the effects that arise from the small dimensions of the system, but their operational principle can often be understood in the same way as for larger optical resonators. Quantum effects of the light's electromagnetic field can be observed. [1] For example, the spontaneous emission rate and behaviour of atoms is altered by such a microcavity, a phenomenon that is referred to as inhibited spontaneous emission. [2] One can imagine this as the situation that no photon is emitted, if the environment is a box that is too small to hold it. This leads to an altered emission spectrum, which is significantly narrowed.
Moreover, nonlinear effects are enhanced by orders of magnitude due to the strong light confinement, leading to the generation of microresonator frequency combs, low-power parametric processes such as down-conversion, second-harmonic generation, four-wave mixing and optical parametric oscillation. [3] Several of these nonlinear processes themselves lead to the generation of quantum states of light. Another field that harnesses the strong confinement of light is cavity optomechanics, where the back-and-forth interaction of the light beam with the mechanical motion of the resonator becomes strongly coupled. [4] [5] Even in this field, quantum effects can start playing a role. [6]
Microcavities have many applications, frequently at present in optoelectronics, where vertical cavity surface emitting lasers VCSEL are probably the best known. Recently, a single photon emitting device was demonstrated by placing a quantum dot in a microcavity. These light sources are interesting for quantum cryptography and quantum computers.
An overview is given in the review article published in the journal Nature. [7]
For a microcavity supporting a single-mode or a few standing-wave modes, the thickness of the spacer layer determines the so-called "cavity-mode", which is the one wavelength that can be transmitted and will be formed as a standing wave inside the resonator. Depending on the type and quality of the mirrors, a so-called stop-band will form in the transmission spectrum of the microcavity, a long range of wavelengths, that is reflected and a single one being transmitted (usually in the centre). There are different means of fabricating standing-wave microcavities, either by evaporating alternating layers of dielectric media to form the mirrors (DBR) and the medium inside the spacer layer or by modification of semiconductor material or by metal mirrors.
Often just called "microresonators", traveling wave microcavities have a wave going around in a loop-like fashion in a preferred direction, depending on the input light direction. They can be in the form of whispering-gallery resonators, or as integrated ring resonators. Typical materials from which they are made could be semiconductors like Silicon, Silicon dioxide, silicon nitride, crystalline fluorides (CaF2, MgF2, SrF2) or lithium niobate. The material is chosen such that it is low-loss and transparent in the wavelength of application desired. Typically, such structures are fabricated by either diamond turning or micromachining a cylindrical rod of a material (especially for fluorides and lithium niobate), or by photolithography and electron-beam lithography to produce a patterned resonator on chip (for silicon-based materials).
When an integer number of wavelengths in the material fits in the circumference of the resonator, a resonant wave is excited by constructive interference. At resonance, the light field can be enhanced by several hundred to several million times, quantified by the Finesse Coefficient of the resonator. [8] This also leads to an ultrahigh quality factor, meaning that light travels around the circumference many million times before decaying into the surroundings. [9] [10]
In physics, polaritons are quasiparticles resulting from strong coupling of electromagnetic waves with an electric or magnetic dipole-carrying excitation. They are an expression of the common quantum phenomenon known as level repulsion, also known as the avoided crossing principle. Polaritons describe the crossing of the dispersion of light with any interacting resonance. To this extent polaritons can also be thought of as the new normal modes of a given material or structure arising from the strong coupling of the bare modes, which are the photon and the dipolar oscillation. The polariton is a bosonic quasiparticle, and should not be confused with the polaron, which is an electron plus an attached phonon cloud.
An optical ring resonator is a set of waveguides in which at least one is a closed loop coupled to some sort of light input and output. The concepts behind optical ring resonators are the same as those behind whispering galleries except that they use light and obey the properties behind constructive interference and total internal reflection. When light of the resonant wavelength is passed through the loop from the input waveguide, the light builds up in intensity over multiple round-trips owing to constructive interference and is output to the output bus waveguide which serves as a detector waveguide. Because only a select few wavelengths will be at resonance within the loop, the optical ring resonator functions as a filter. Additionally, as implied earlier, two or more ring waveguides can be coupled to each other to form an add/drop optical filter.
Spontaneous parametric down-conversion is a nonlinear instant optical process that converts one photon of higher energy, into a pair of photons of lower energy, in accordance with the law of conservation of energy and law of conservation of momentum. It is an important process in quantum optics, for the generation of entangled photon pairs, and of single photons.
Four-wave mixing (FWM) is an intermodulation phenomenon in nonlinear optics, whereby interactions between two or three wavelengths produce two or one new wavelengths. It is similar to the third-order intercept point in electrical systems. Four-wave mixing can be compared to the intermodulation distortion in standard electrical systems. It is a parametric nonlinear process, in that the energy of the incoming photons is conserved. FWM is a phase-sensitive process, in that the efficiency of the process is strongly affected by phase matching conditions.
An optical parametric oscillator (OPO) is a parametric oscillator that oscillates at optical frequencies. It converts an input laser wave with frequency into two output waves of lower frequency by means of second-order nonlinear optical interaction. The sum of the output waves' frequencies is equal to the input wave frequency: . For historical reasons, the two output waves are called "signal" and "idler", where the output wave with higher frequency is the "signal". A special case is the degenerate OPO, when the output frequency is one-half the pump frequency, , which can result in half-harmonic generation when signal and idler have the same polarization.
Sound amplification by stimulated emission of radiation (SASER) refers to a device that emits acoustic radiation. It focuses sound waves in a way that they can serve as accurate and high-speed carriers of information in many kinds of applications—similar to uses of laser light.
Yoshihisa Yamamoto is the director of Physics & Informatics Laboratories, NTT Research, Inc. He is also Professor (Emeritus) at Stanford University and National Institute of Informatics (Tokyo).
An optical transistor, also known as an optical switch or a light valve, is a device that switches or amplifies optical signals. Light occurring on an optical transistor's input changes the intensity of light emitted from the transistor's output while output power is supplied by an additional optical source. Since the input signal intensity may be weaker than that of the source, an optical transistor amplifies the optical signal. The device is the optical analog of the electronic transistor that forms the basis of modern electronic devices. Optical transistors provide a means to control light using only light and has applications in optical computing and fiber-optic communication networks. Such technology has the potential to exceed the speed of electronics, while conserving more power.
The Purcell effect is the enhancement of a quantum system's spontaneous emission rate by its environment. In the 1940s Edward Mills Purcell discovered the enhancement of spontaneous emission rates of atoms when they are incorporated into a resonant cavity.
Single-photon sources are light sources that emit light as single particles or photons. These sources are distinct from coherent light sources (lasers) and thermal light sources such as incandescent light bulbs. The Heisenberg uncertainty principle dictates that a state with an exact number of photons of a single frequency cannot be created. However, Fock states can be studied for a system where the electric field amplitude is distributed over a narrow bandwidth. In this context, a single-photon source gives rise to an effectively one-photon number state. Photons from an ideal single-photon source exhibit quantum mechanical characteristics. These characteristics include photon antibunching, so that the time between two successive photons is never less than some minimum value. This behaviour is normally demonstrated by using a beam splitter to direct about half of the incident photons toward one avalanche photodiode, and half toward a second. Pulses from one detector are used to provide a ‘counter start’ signal, to a fast electronic timer, and the other, delayed by a known number of nanoseconds, is used to provide a ‘counter stop’ signal. By repeatedly measuring the times between ‘start’ and ‘stop’ signals, one can form a histogram of time delay between two photons and the coincidence count- if bunching is not occurring, and photons are indeed well spaced, a clear notch around zero delay is visible.
In optical physics, laser detuning is the tuning of a laser to a frequency that is slightly off from a quantum system's resonant frequency. When used as a noun, the laser detuning is the difference between the resonance frequency of the system and the laser's optical frequency. Lasers tuned to a frequency below the resonant frequency are called red-detuned, and lasers tuned above resonance are called blue-detuned.
In physics the Exciton–polariton is a type of polariton; a hybrid light and matter quasiparticle arising from the strong coupling of the electromagnetic dipolar oscillations of excitons and photons. Because light excitations are observed classically as photons, which are massless particles, they do not therefore have mass, like a physical particle. This property makes them a quasiparticle.
Whispering-gallery waves, or whispering-gallery modes, are a type of wave that can travel around a concave surface. Originally discovered for sound waves in the whispering gallery of St Paul's Cathedral, they can exist for light and for other waves, with important applications in nondestructive testing, lasing, cooling and sensing, as well as in astronomy.
Photonic molecules are a theoretical natural form of matter which can also be made artificially in which photons bind together to form "molecules". They were first predicted in 2007. Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". In an alternative definition, photons confined to two or more coupled optical cavities also reproduce the physics of interacting atomic energy levels, and have been termed as photonic molecules.
A nanophotonic resonator or nanocavity is an optical cavity which is on the order of tens to hundreds of nanometers in size. Optical cavities are a major component of all lasers, they are responsible for providing amplification of a light source via positive feedback, a process known as amplified spontaneous emission or ASE. Nanophotonic resonators offer inherently higher light energy confinement than ordinary cavities, which means stronger light-material interactions, and therefore lower lasing threshold provided the quality factor of the resonator is high. Nanophotonic resonators can be made with photonic crystals, silicon, diamond, or metals such as gold.
Luigi Lugiato is an Italian physicist and professor emeritus at University of Insubria (Varese/Como). He is best known for his work in theoretical nonlinear and quantum optics, and especially for the Lugiato–Lefever equation (LLE,). He has authored more than 340 scientific articles, and the textbook Nonlinear Dynamical Systems. His work has been theoretical but has stimulated a large number of important experiments in the world. It is also characterized by the fact of combining the classical and quantum aspects of optical systems.
Cavity optomechanics is a branch of physics which focuses on the interaction between light and mechanical objects on low-energy scales. It is a cross field of optics, quantum optics, solid-state physics and materials science. The motivation for research on cavity optomechanics comes from fundamental effects of quantum theory and gravity, as well as technological applications.
Kerry J. Vahala is an American professor of Applied Physics at the California Institute of Technology (Caltech). He holds the Ted and Ginger Jenkins chair of Information Science and Technology and also serves as the Executive Officer of the Department of Applied Physics and Materials Science. He received his B.S. and Ph.D. degrees in Applied Physics and an M.S. degree in Electrical Engineering, all from Caltech.
Kerr frequency combs are optical frequency combs which are generated from a continuous wave pump laser by the Kerr nonlinearity. This coherent conversion of the pump laser to a frequency comb takes place inside an optical resonator which is typically of micrometer to millimeter in size and is therefore termed a microresonator. The coherent generation of the frequency comb from a continuous wave laser with the optical nonlinearity as a gain sets Kerr frequency combs apart from today’s most common optical frequency combs. These frequency combs are generated by mode-locked lasers where the dominating gain stems from a conventional laser gain medium, which is pumped incoherently. Because Kerr frequency combs only rely on the nonlinear properties of the medium inside the microresonator and do not require a broadband laser gain medium, broad Kerr frequency combs can in principle be generated around any pump frequency.
The model usually designated as Lugiato–Lefever equation (LLE) was formulated in 1987 by Luigi Lugiato and René Lefever as a paradigm for spontaneous pattern formation in nonlinear optical systems. The patterns originate from the interaction of a coherent field, that is injected into a resonant optical cavity, with a Kerr medium that fills the cavity.