Diamond turning

Last updated
Diamond flycutting Diamond Fly Cutting Machine.jpg
Diamond flycutting

Diamond turning is turning using a cutting tool with a diamond tip. It is a process of mechanical machining of precision elements using lathes or derivative machine tools (e.g., turn-mills, rotary transfers) equipped with natural or synthetic diamond-tipped tool bits. The term single-point diamond turning (SPDT) is sometimes applied, although as with other lathe work, the "single-point" label is sometimes only nominal (radiused tool noses and contoured form tools being options). The process of diamond turning is widely used to manufacture high-quality aspheric optical elements from crystals, metals, acrylic, and other materials. Plastic optics are frequently molded using diamond turned mold inserts. Optical elements produced by the means of diamond turning are used in optical assemblies in telescopes, video projectors, missile guidance systems, lasers, scientific research instruments, and numerous other systems and devices. Most SPDT today is done with computer numerical control (CNC) machine tools. Diamonds also serve in other machining processes, such as milling, grinding, and honing. Diamond turned surfaces have a high specular brightness and require no additional polishing or buffing, unlike other conventionally machined surfaces.

Contents

Process

Diamond turning is a multi-stage process. Initial stages of machining are carried out using a series of CNC lathes of increasing accuracy. A diamond-tipped lathe tool is used in the final stages of the manufacturing process to achieve sub-nanometer level surface finishes and sub-micrometer form accuracies.[ citation needed ] The surface finish quality is measured as the peak-to-valley distance of the grooves left by the lathe. The form accuracy is measured as a mean deviation from the ideal target form. Quality of surface finish and form accuracy is monitored throughout the manufacturing process using such equipment as contact and laser profilometers, laser interferometers, optical and electron microscopes. Diamond turning is most often used for making infrared optics, because at longer wavelengths optical performance is less sensitive to surface finish quality, and because many of the materials used are difficult to polish with traditional methods.

Temperature control is crucial, because the surface must be accurate on distance scales shorter than the wavelength of light. Temperature changes of a few degrees during machining can alter the form of the surface enough to have an effect. The main spindle may be cooled with a liquid coolant to prevent temperature deviations.

The diamonds that are used in the process are strong in the downhill regime but tool wear is also highly dependent on crystal anisotropy and work material.

The machine tool

For best possible quality natural diamonds are used as single-point cutting elements during the final stages of the machining process. A CNC SPDT lathe rests atop a high-quality granite base with micrometer surface finish quality. The granite base is placed on air suspension on a solid foundation, keeping its working surface strictly horizontal. The machine tool components are placed on top of the granite base and can be moved with high degree of accuracy using a high-pressure air cushion or hydraulic suspension. The machined element is attached to an air chuck using negative air pressure and is usually centered manually using a micrometer. The chuck itself is separated from the electric motor that spins it by another air suspension.

The cutting tool is moved with sub-micron precision by a combination of electric motors and piezoelectric actuators. As with other CNC machines, the motion of the tool is controlled by a list of coordinates generated by a computer. Typically, the part to be created is first described using a computer aided design (CAD) model, then converted to G-code using a computer aided manufacturing (CAM) program, and the G-code is then executed by the machine control computer to move the cutting tool.[ citation needed ] The final surface is achieved with a series of cutting passes to maintain a ductile cutting regime.

Alternative methods of diamond machining in practice also include diamond fly cutting and diamond milling. Diamond fly cutting can be used to generate diffraction gratings and other linear patterns with appropriately contoured diamond shapes. Diamond milling can be used to generate aspheric lens arrays by annulus cutting methods with a spherical diamond tool.

Materials

Diamond turning is specifically useful when cutting materials that are viable as infrared optical components and certain non-linear optical components such as potassium dihydrogen phosphate (KDP). KDP is a perfect material in application for diamond turning, because the material is very desirable for its optical modulating properties, yet it is impossible to make optics from this material using conventional methods. KDP is water-soluble, so conventional grinding and polishing techniques are not effective in producing optics. Diamond turning works well to produce optics from KDP.

Generally, diamond turning is restricted to certain materials. Materials that are readily machinable include: [1]

The most often requested materials that are not readily machinable are: [1]

Ferrous materials are not readily machinable because the carbon in the diamond tool chemically reacts with the substrate, leading to tool damage and dulling after short cut lengths. Several techniques have been investigated to prevent this reaction, but few have been successful for long diamond machining processes at mass production scales.

Tool life improvement has been under consideration in diamond turning as the tool is expensive. Hybrid processes such as laser-assisted machining have emerged in this industry recently. [2] The laser softens hard and difficult-to-machine materials such as ceramics and semiconductors, making them easier to cut. [3]

Quality control

Despite all the automation involved in the diamond turning process, the human operator still plays the main role in achieving the final result. Quality control is a major part of the diamond turning process and is required after each stage of machining, sometimes after each pass of the cutting tool. If it is not detected immediately, even a minute error during any of the cutting stages results in a defective part. The extremely high requirements for quality of diamond-turned optics leave virtually no room for error.

The SPDT manufacturing process produces a relatively high percentage of defective parts, which must be discarded. As a result, the manufacturing costs are high compared to conventional polishing methods. Even with the relatively high volume of optical components manufactured using the SPDT process, this process cannot be classified as mass production, especially when compared with production of polished optics. Each diamond-turned optical element is manufactured on an individual basis with extensive manual labor.

See also

Related Research Articles

<span class="mw-page-title-main">Lathe</span> Machine tool which rotates the work piece on its axis

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

<span class="mw-page-title-main">Computer-aided manufacturing</span> Use of software to control industrial processes

Computer-aided manufacturing (CAM) also known as computer-aided modeling or computer-aided machining is the use of software to control machine tools in the manufacturing of work pieces. This is not the only definition for CAM, but it is the most common. It may also refer to the use of a computer to assist in all operations of a manufacturing plant, including planning, management, transportation and storage. Its primary purpose is to create a faster production process and components and tooling with more precise dimensions and material consistency, which in some cases, uses only the required amount of raw material, while simultaneously reducing energy consumption. CAM is now a system used in schools and lower educational purposes. CAM is a subsequent computer-aided process after computer-aided design (CAD) and sometimes computer-aided engineering (CAE), as the model generated in CAD and verified in CAE can be input into CAM software, which then controls the machine tool. CAM is used in many schools alongside computer-aided design (CAD) to create objects.

<span class="mw-page-title-main">Machine tool</span> Machine for handling or machining metal or other rigid materials

A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All machine tools have some means of constraining the workpiece and provide a guided movement of the parts of the machine. Thus, the relative movement between the workpiece and the cutting tool is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or "freehand". It is a power-driven metal cutting machine which assists in managing the needed relative motion between cutting tool and the job that changes the size and shape of the job material.

<span class="mw-page-title-main">Metalworking</span> Process of making items from metal

Metalworking is the process of shaping and reshaping metals to create useful objects, parts, assemblies, and large scale structures. As a term it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges down to precise engine parts and delicate jewelry.

<span class="mw-page-title-main">Machinist</span> Technician

A machinist is a tradesperson or trained professional who operates machine tools, and has the ability to set up tools such as milling machines, grinders, lathes, and drilling machines.

<span class="mw-page-title-main">Machining</span> Material-removal process; manufacturing process

Machining is a process in which a material is cut to a desired final shape and size by a controlled material-removal process. The methods that have this common theme are collectively called subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.

<span class="mw-page-title-main">Laser cutting</span> Technology that uses a laser to cut materials

Laser cutting is a technology that uses a laser to vaporize materials, resulting in a cut edge. While typically used for industrial manufacturing applications, it is now used by schools, small businesses, architecture, and hobbyists. Laser cutting works by directing the output of a high-power laser most commonly through optics. The laser optics and CNC are used to direct the laser beam to the material. A commercial laser for cutting materials uses a motion control system to follow a CNC or G-code of the pattern to be cut onto the material. The focused laser beam is directed at the material, which then either melts, burns, vaporizes away, or is blown away by a jet of gas, leaving an edge with a high-quality surface finish.

<span class="mw-page-title-main">Numerical control</span> Computer control of machine tools, lathes and milling machines, also used on 3D printers

Numerical control is the automated control of machining tools by means of a computer. A CNC machine processes a piece of material to meet specifications by following coded programmed instructions and without a manual operator directly controlling the machining operation.

<span class="mw-page-title-main">Turning</span> Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

<span class="mw-page-title-main">Metal lathe</span> Machine tool used to remove material from a rotating workpiece

In machining, a metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

<span class="mw-page-title-main">Aspheric lens</span> Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

<span class="mw-page-title-main">Boring (manufacturing)</span> Process of enlarging an already-drilled hole with a single-point cutting tool

In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters.

Optical manufacturing and testing spans an enormous range of manufacturing procedures and optical test configurations.

<span class="mw-page-title-main">Diamond tool</span>

A diamond tool is a cutting tool with diamond grains fixed on the functional parts of the tool via a bonding material or another method. As diamond is a superhard material, diamond tools have many advantages as compared with tools made with common abrasives such as corundum and silicon carbide.

<span class="mw-page-title-main">Ultrasonic machining</span> Subtractive manufacturing process

Ultrasonic machining is a subtractive manufacturing process that removes material from the surface of a part through high frequency, low amplitude vibrations of a tool against the material surface in the presence of fine abrasive particles. The tool travels vertically or orthogonal to the surface of the part at amplitudes of 0.05 to 0.125 mm. The fine abrasive grains are mixed with water to form a slurry that is distributed across the part and the tip of the tool. Typical grain sizes of the abrasive material range from 100 to 1000, where smaller grains produce smoother surface finishes.

<span class="mw-page-title-main">Honing (metalworking)</span> Production of a precise surface on a metal workpiece

Honing is an abrasive machining process that produces a precision surface on a metal workpiece by scrubbing an abrasive grinding stone or grinding wheel against it along a controlled path. Honing is primarily used to improve the geometric form of a surface, but can also improve the surface finish.

In manufacturing, threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

<span class="mw-page-title-main">Precision glass moulding</span> Production of optical glass without grinding and polishing

Precision glass moulding is a replicative process that allows the production of high precision optical components from glass without grinding and polishing. The process is also known as ultra-precision glass pressing. It is used to manufacture precision glass lenses for consumer products such as digital cameras, and high-end products like medical systems. The main advantage over mechanical lens production is that complex lens geometries such as aspheres can be produced cost-efficiently.

<span class="mw-page-title-main">Multiaxis machining</span> Manufacturing processes using tools that can move in 4 or more directions

Multiaxis machining is a manufacturing process that involves tools that move in 4 or more directions and are used to manufacture parts out of metal or other materials by milling away excess material, by water jet cutting or by laser cutting. This type of machining was originally performed mechanically on large complex machines. These machines operated on 4, 5, 6, and even 12 axes which were controlled individually via levers that rested on cam plates. The cam plates offered the ability to control the tooling device, the table in which the part is secured, as well as rotating the tooling or part within the machine. Due to the machines size and complexity it took extensive amounts of time to set them up for production. Once computer numerically controlled machining was introduced it provided a faster, more efficient method for machining complex parts.

Facing in machining can be used in two different areas: facing on a milling machine and facing on a lathe. Facing on the milling machine involves various milling operations, but primarily face milling. On the lathe, facing is commonly used in turning and boring operations. Other operations remove material in ways similar to facing, for example, planing, shaping, and grinding, but these processes are not labeled by the term "facing."

References

  1. 1 2 Mark Craig Gerchman (1986). Fischer, Robert E; Smith, Warren J (eds.). "Specifications and manufacturing considerations of diamond-machined optical components" (PDF). Optical Components Specifications for Laser-based Systems and Other Modern Optical Systems. Optical Component Specifications for Laser-based Systems and Other Modern Optical Systems. 607: 36–45. Bibcode:1986SPIE..607...36G. doi:10.1117/12.956360. S2CID   135651810.
  2. Mohammadi, Hossein; Poyraz, H. Bogac; Ravindra, Deepak; Patten, John A. (2014). Single point diamond turning of silicon by using micro-laser assisted machining Technique. ASME 2014 International Manufacturing Science and Engineering Conference. Vol. 2. doi:10.1115/MSEC2014-4138. ISBN   978-0-7918-4581-3.
  3. Mohammadi, Hossein; Poyraz, H. Bogac; Ravindra, Deepak; Patten, John A. (2015). "Surface finish improvement of an unpolished silicon wafer using micro-laser assisted machining". International Journal of Abrasive Technology. 7 (2): 107–121. doi:10.1504/IJAT.2015.073805.