Diamond turning

Last updated

History of Diamond Turning

The advent of single point diamond turning (SPDT) set it apart from earlier methods like grinding tools, using precision-fabricated, gem-quality diamonds to create surfaces and cut nonferrous materials. Research into this technology began in the late 1940s with Philips in the Netherlands, while Lawrence Livermore National Laboratory (LLNL) pioneered SPDT in the mid-1960s. By 1979, LLNL received funding to transfer this technology to private industry, including Pneumo Precision, a precursor to Precitech.

Contents

LLNL initially focused on two-axis machining for axisymmetric surfaces and developed the Large Optics Diamond Turning Machine (LDTM), a highly accurate lathe. They also experimented with freeform surfaces using fast tool servos and XZC (slow tool servo) turning, leading to applications like wavefront correctors for lasers.

Three-axis turning became more common in the early 1990s as diamond quality improved. Companies like Zeiss began producing refractive lenses for infrared optics, advancing freeform optical manufacturing. By 2002, interest in freeform shapes had expanded, especially in focusing lenses. Early applications included Polaroid’s SX-70 camera, and fast tool servos enabled rapid production of non-axisymmetric surfaces for contact lenses.

Diamond flycutting Diamond Fly Cutting Machine.jpg
Diamond flycutting

Diamond turning is turning using a cutting tool with a diamond tip. It is a process of mechanical machining of precision elements using lathes or derivative machine tools (e.g., turn-mills, rotary transfers) equipped with natural or synthetic diamond-tipped tool bits. The term single-point diamond turning (SPDT) is sometimes applied, although as with other lathe work, the "single-point" label is sometimes only nominal (radiused tool noses and contoured form tools being options). The process of diamond turning is widely used to manufacture high-quality aspheric optical elements from crystals, metals, acrylic, and other materials. Plastic optics are frequently molded using diamond turned mold inserts. Optical elements produced by the means of diamond turning are used in optical assemblies in telescopes, video projectors, missile guidance systems, lasers, scientific research instruments, and numerous other systems and devices. Most SPDT today is done with computer numerical control (CNC) machine tools. Diamonds also serve in other machining processes, such as milling, grinding, and honing. Diamond turned surfaces have a high specular brightness and require no additional polishing or buffing, unlike other conventionally machined surfaces.

Process

Diamond turning is a multi-stage process. Initial stages of machining are carried out using a series of CNC lathes of increasing accuracy. A diamond-tipped lathe tool is used in the final stages of the manufacturing process to achieve sub-nanometer level surface finishes and sub-micrometer form accuracies.[ citation needed ] The surface finish quality is measured as the peak-to-valley distance of the grooves left by the lathe. The form accuracy is measured as a mean deviation from the ideal target form. Quality of surface finish and form accuracy is monitored throughout the manufacturing process using such equipment as contact and laser profilometers, laser interferometers, optical and electron microscopes. Diamond turning is most often used for making infrared optics, because at longer wavelengths midspatial frequencies do not affect optical performance as it is less sensitive to surface finish quality, and because many of the materials used are difficult to polish with traditional methods.

Temperature control is crucial, because the surface must be accurate on distance scales shorter than the wavelength of light. Temperature changes of a few degrees during machining can alter the form of the surface enough to have an effect. The main spindle may be cooled with a liquid coolant to prevent temperature deviations.

The diamonds that are used in the process are strong in the downhill regime but tool wear is also highly dependent on crystal anisotropy and work material.

The machine tool

For best possible quality natural diamonds are used as single-point cutting elements during the final stages of the machining process. A CNC SPDT lathe rests atop a high-quality granite base with micrometer surface finish quality. The granite base is placed on air suspension on a solid foundation, keeping its working surface strictly horizontal. The machine tool components are placed on top of the granite base and can be moved with high degree of accuracy using a high-pressure air cushion or hydraulic suspension. The machined element is attached to an air chuck using negative air pressure and is usually centered manually using a micrometer. The chuck itself is separated from the electric motor that spins it by another air suspension.

The cutting tool is moved with sub-micron precision by a combination of electric motors and piezoelectric actuators. As with other CNC machines, the motion of the tool is controlled by a list of coordinates generated by a computer. Typically, the part to be created is first described using a computer aided design (CAD) model, then converted to G-code using a computer aided manufacturing (CAM) program, and the G-code is then executed by the machine control computer to move the cutting tool.[ citation needed ] The final surface is achieved with a series of cutting passes to maintain a ductile cutting regime.

Alternative methods of diamond machining in practice also include diamond fly cutting and diamond milling. Diamond fly cutting can be used to generate diffraction gratings and other linear patterns with appropriately contoured diamond shapes. Diamond milling can be used to generate aspheric lens arrays by annulus cutting methods with a spherical diamond tool.

Materials

Diamond turning is specifically useful when cutting materials that are viable as infrared optical components and certain non-linear optical components such as potassium dihydrogen phosphate (KDP). KDP is a perfect material in application for diamond turning, because the material is very desirable for its optical modulating properties, yet it is impossible to make optics from this material using conventional methods. KDP is water-soluble, so conventional grinding and polishing techniques are not effective in producing optics. Diamond turning works well to produce optics from KDP.

Generally, diamond turning is restricted to certain materials. Materials that are readily machinable include: [1]

The most often requested materials that are not readily machinable are: [1]

Ferrous materials are not readily machinable because the carbon in the diamond tool chemically reacts with the substrate, leading to tool damage and dulling after short cut lengths. Several techniques have been investigated to prevent this reaction, but few have been successful for long diamond machining processes at mass production scales.

Tool life improvement has been under consideration in diamond turning as the tool is expensive. Hybrid processes such as laser-assisted machining have emerged in this industry recently. [2] The laser softens hard and difficult-to-machine materials such as ceramics and semiconductors, making them easier to cut. [3]

Quality control

Despite all the automation involved in the diamond turning process, the human operator still plays the main role in achieving the final result. Quality control is a major part of the diamond turning process and is required after each stage of machining, sometimes after each pass of the cutting tool. If it is not detected immediately, even a minute error during any of the cutting stages results in a defective part. The extremely high requirements for quality of diamond-turned optics leave virtually no room for error.

The SPDT manufacturing process produces a relatively high percentage of defective parts, which must be discarded. As a result, the manufacturing costs are high compared to conventional polishing methods. Even with the relatively high volume of optical components manufactured using the SPDT process, this process cannot be classified as mass production, especially when compared with production of polished optics. Each diamond-turned optical element is manufactured on an individual basis with extensive manual labor.

See also

Related Research Articles

<span class="mw-page-title-main">Lathe</span> Machine tool which rotates the work piece on its axis

A lathe is a machine tool that rotates a workpiece about an axis of rotation to perform various operations such as cutting, sanding, knurling, drilling, deformation, facing, threading and turning, with tools that are applied to the workpiece to create an object with symmetry about that axis.

<span class="mw-page-title-main">Machine tool</span> Machine for handling or machining metal or other rigid materials

A machine tool is a machine for handling or machining metal or other rigid materials, usually by cutting, boring, grinding, shearing, or other forms of deformations. Machine tools employ some sort of tool that does the cutting or shaping. All machine tools have some means of constraining the workpiece and provide a guided movement of the parts of the machine. Thus, the relative movement between the workpiece and the cutting tool is controlled or constrained by the machine to at least some extent, rather than being entirely "offhand" or "freehand". It is a power-driven metal cutting machine which assists in managing the needed relative motion between cutting tool and the job that changes the size and shape of the job material.

<span class="mw-page-title-main">Metalworking</span> Process of making items from metal

Metalworking is the process of shaping and reshaping metals in order to create useful objects, parts, assemblies, and large scale structures. As a term, it covers a wide and diverse range of processes, skills, and tools for producing objects on every scale: from huge ships, buildings, and bridges, down to precise engine parts and delicate jewelry.

<span class="mw-page-title-main">Machinist</span> Technician

A machinist is a tradesperson or trained professional who operates machine tools, and has the ability to set up tools such as milling machines, grinders, lathes, and drilling machines.

<span class="mw-page-title-main">Machining</span> Material-removal process; manufacturing process

Machining is a manufacturing process where a desired shape or part is created using the controlled removal of material, most often metal, from a larger piece of raw material by cutting. Machining is a form of subtractive manufacturing, which utilizes machine tools, in contrast to additive manufacturing, which uses controlled addition of material.

<span class="mw-page-title-main">Laser cutting</span> Technology that uses a laser to cut materials

Laser cutting is a technology that uses a laser to vaporize materials, resulting in a cut edge. While typically used for industrial manufacturing applications, it is now used by schools, small businesses, architecture, and hobbyists. Laser cutting works by directing the output of a high-power laser most commonly through optics. The laser optics and CNC are used to direct the laser beam to the material. A commercial laser for cutting materials uses a motion control system to follow a CNC or G-code of the pattern to be cut onto the material. The focused laser beam is directed at the material, which then either melts, burns, vaporizes away, or is blown away by a jet of gas, leaving an edge with a high-quality surface finish.

<span class="mw-page-title-main">Numerical control</span> Computer control of machine tools

In machining, numerical control, also called computer numerical control (CNC), is the automated control of tools by means of a computer. It is used to operate tools such as drills, lathes, mills, grinders, routers and 3D printers. CNC transforms a piece of material into a specified shape by following coded programmed instructions and without a manual operator directly controlling the machining operation.

<span class="mw-page-title-main">Metal fabrication</span> Creation of metal structures

Metal fabrication is the creation of metal structures by cutting, bending and assembling processes. It is a value-added process involving the creation of machines, parts, and structures from various raw materials.

<span class="mw-page-title-main">Electrochemical machining</span> Process for shaping conductive metals

Electrochemical machining (ECM) is a method of removing metal by an electrochemical process. It is normally used for mass production and for working extremely hard materials, or materials that are difficult to machine using conventional methods. Its use is limited to electrically conductive materials. ECM can cut small or odd-shaped angles, intricate contours or cavities in hard and exotic metals, such as titanium aluminides, Inconel, Waspaloy, and high nickel, cobalt, and rhenium alloys. Both external and internal geometries can be machined.

<span class="mw-page-title-main">Turning</span> Machining process

Turning is a machining process in which a cutting tool, typically a non-rotary tool bit, describes a helix toolpath by moving more or less linearly while the workpiece rotates.

<span class="mw-page-title-main">Metal lathe</span> Machine tool used to remove material from a rotating workpiece

In machining, a metal lathe or metalworking lathe is a large class of lathes designed for precisely machining relatively hard materials. They were originally designed to machine metals; however, with the advent of plastics and other materials, and with their inherent versatility, they are used in a wide range of applications, and a broad range of materials. In machining jargon, where the larger context is already understood, they are usually simply called lathes, or else referred to by more-specific subtype names. These rigid machine tools remove material from a rotating workpiece via the movements of various cutting tools, such as tool bits and drill bits.

<span class="mw-page-title-main">Aspheric lens</span> Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

<span class="mw-page-title-main">Boring (manufacturing)</span> Process of enlarging an already-drilled hole with a single-point cutting tool

In machining, boring is the process of enlarging a hole that has already been drilled by means of a single-point cutting tool, such as in boring a gun barrel or an engine cylinder. Boring is used to achieve greater accuracy of the diameter of a hole, and can be used to cut a tapered hole. Boring can be viewed as the internal-diameter counterpart to turning, which cuts external diameters.

Optical manufacturing and testing is the process of manufacturing and testing optical components. It spans a wide range of manufacturing procedures and optical test configurations.

<span class="mw-page-title-main">Diamond tool</span> Cutting tool with diamond grains

A diamond tool is a cutting tool with diamond grains fixed on the functional parts of the tool via a bonding material or another method. As diamond is a superhard material, diamond tools have many advantages as compared with tools made with common abrasives such as corundum and silicon carbide.

Ophir Optronics Solutions is a multinational company that sells optronics solutions. The company develops, manufactures and markets infrared (IR) optics and laser measurement equipment. Founded in 1976, the company was traded on the Tel Aviv Stock Exchange from 1991 until it was acquired, and was a constituent of its Tel-tech index. Headquartered in the Har Hotzvim industrial park in Jerusalem, Israel Ophir owns a 100,000-square-foot (9,300 m2) complex that includes the group's main production plant. Ophir has additional production plants in North Andover, Massachusetts and Logan, Utah in the US and sales offices in the US, Japan and Europe. In 2006, Ophir acquired Spiricon Group, a US-based company in the beam-profiling market. Ophir's sales increased sharply from $45 million in 2005 to $74 million in 2007. During 2007, Ophir established a Swiss-based subsidiary to market lenses and components for surveillance and imaging systems in Europe. In May 2010, Ophir acquired Photon Inc., another US-based beam-profiling company. Newport Corporation, a global supplier in photonics solutions, completed its acquisition of the Ophir company in October 2011. In 2016, metrology firm MKS Instruments bought Newport Corporation, including the Ophir brand, for $980 million.

In manufacturing, threading is the process of creating a screw thread. More screw threads are produced each year than any other machine element. There are many methods of generating threads, including subtractive methods ; deformative or transformative methods ; additive methods ; or combinations thereof.

<span class="mw-page-title-main">Precision glass moulding</span> Production of optical glass without grinding and polishing

Precision glass moulding is a replicative process that allows the production of high precision optical components from glass without grinding and polishing. The process is also known as ultra-precision glass pressing. It is used to manufacture precision glass lenses for consumer products such as digital cameras, and high-end products like medical systems. The main advantage over mechanical lens production is that complex lens geometries such as aspheres can be produced cost-efficiently.

<span class="mw-page-title-main">Multiaxis machining</span> Manufacturing processes using tools that can move in 4 or more directions

Multiaxis machining is a manufacturing process that involves tools that move in 4 or more directions and are used to manufacture parts out of metal or other materials by milling away excess material, by water jet cutting or by laser cutting. This type of machining was originally performed mechanically on large complex machines. These machines operated on 4, 5, 6, and even 12 axes which were controlled individually via levers that rested on cam plates. The cam plates offered the ability to control the tooling device, the table in which the part is secured, as well as rotating the tooling or part within the machine. Due to the machines size and complexity it took extensive amounts of time to set them up for production. Once computer numerically controlled machining was introduced it provided a faster, more efficient method for machining complex parts.

<span class="mw-page-title-main">High performance positioning system</span> Industrial Engineering method

A high performance positioning system (HPPS) is a type of positioning system consisting of a piece of electromechanics equipment (e.g. an assembly of linear stages and rotary stages) that is capable of moving an object in a three-dimensional space within a work envelope. Positioning could be done point to point or along a desired path of motion. Position is typically defined in six degrees of freedom, including linear, in an x,y,z cartesian coordinate system, and angular orientation of yaw, pitch, roll. HPPS are used in many manufacturing processes to move an object (tool or part) smoothly and accurately in six degrees of freedom, along a desired path, at a desired orientation, with high acceleration, high deceleration, high velocity and low settling time. It is designed to quickly stop its motion and accurately place the moving object at its desired final position and orientation with minimal jittering.

References

  1. 1 2 Mark Craig Gerchman (1986). Fischer, Robert E; Smith, Warren J (eds.). "Specifications and manufacturing considerations of diamond-machined optical components" (PDF). Optical Components Specifications for Laser-based Systems and Other Modern Optical Systems. Optical Component Specifications for Laser-based Systems and Other Modern Optical Systems. 607: 36–45. Bibcode:1986SPIE..607...36G. doi:10.1117/12.956360. S2CID   135651810.
  2. Mohammadi, Hossein; Poyraz, H. Bogac; Ravindra, Deepak; Patten, John A. (2014). Single point diamond turning of silicon by using micro-laser assisted machining Technique. ASME 2014 International Manufacturing Science and Engineering Conference. Vol. 2. doi:10.1115/MSEC2014-4138. ISBN   978-0-7918-4581-3.
  3. Mohammadi, Hossein; Poyraz, H. Bogac; Ravindra, Deepak; Patten, John A. (2015). "Surface finish improvement of an unpolished silicon wafer using micro-laser assisted machining". International Journal of Abrasive Technology. 7 (2): 107–121. doi:10.1504/IJAT.2015.073805.