Lampworking

Last updated
Lampwork Glass Eye Cabochon Tutorial Boro
Lampwork glass beads Lampwork2.jpg
Lampwork glass beads

Lampworking is a type of glasswork in which a torch or lamp is used to melt the glass. Once in a molten state, the glass is formed by blowing and shaping with tools and hand movements. It is also known as flameworking or torchworking, as the modern practice no longer uses oil-fueled lamps. Although lack of a precise definition for lampworking makes it difficult to determine when this technique was first developed, the earliest verifiable lampworked glass is probably a collection of beads thought to date to the fifth century BCE. [1] Lampworking became widely practiced in Murano, Italy in the 14th century. As early as the 17th century, itinerant glassworkers demonstrated lampworking to the public. [2] In the mid-19th century lampwork technique was extended to the production of paperweights, primarily in France, where it became a popular art form, still collected today. Lampworking differs from glassblowing in that glassblowing uses a furnace as the primary heat source, although torches are also used.

Contents

Early lampworking was done in the flame of an oil lamp, with the artist blowing air into the flame through a pipe or using foot-powered bellows. [3] Most artists today use torches that burn either propane or natural gas, or in some countries butane, for the fuel gas, mixed with either air or pure oxygen as the oxidizer. Many hobbyists use MAPP gas in portable canisters for fuel and some use oxygen concentrators as a source of continuous oxygen.

Lampworking is used to create artwork, including beads, figurines, marbles, small vessels,sculpture, Christmas tree ornaments, and much more. It is also used to create scientific instruments as well as glass models of animal and botanical subjects. artist such as American Brent Kee Young uses this technique to make large scale sculpture. A 192"x 28" was acquired by the Imagine museum.

Glass selection

Lampworking can be done with many types of glass, but the most common are soda-lime glass and lead glass, both called "soft glass", and borosilicate glass, often called "hard glass". Leaded glass tubing was commonly used in the manufacture of neon signs, and many US lampworkers used it in making blown work. Some colored glass tubing that was also used in the neon industry was used to make small colored blown work, and colored glass rod, of compatible lead and soda-lime glasses, was used to ornament both clear and colored tubing. The use of soft glass tubing has been fading, owing partly to environmental concerns and health risks but mainly to the adoption of borosilicate glass by most lampworkers, especially since the introduction of colored glasses compatible with clear borosilicate.

Soft glass is sometimes useful because it melts at lower temperatures, but it does not react well to rapid temperature changes as borosilicate glass does. Soft glass expands and contracts much more than hard glass when heated/cooled, and must be kept at an even temperature while being worked, especially if the piece being made has sections of varying thickness. If thin areas cool below the "stress point", shrinking can cause a crack. Hard glass, or borosilicate, shrinks much less, so is more forgiving. Borosilicate is just like regular silicate glass (SiO2), but it has a more flexible molecular structure from being doped with boron.

Glasses to be fused together must be selected for compatibility with each other, both chemically (more of a concern with soft glass than borosilicate) and in terms of coefficient of thermal expansion (COE) [CTE is also used for Coefficient of Thermal Expansion.] Glasses with incompatible COE, mixed together, can create powerful stresses within a finished piece as it cools, cracking or violently shattering the piece. Chemically, some colors can react with each other when melted together. This may cause desirable effects in coloration, metallic sheen, or an aesthetically pleasing "web effect". It also can cause undesirable effects such as unattractive discoloration, bubbling, or devitrification.

Borosilicate glass is considered more forgiving to work with, as its lower COE makes it less apt to crack during flameworking than soda-lime glass or lead glass. However, it has a narrower working temperature range than the soft glasses, has fewer available colors, and is considerably more expensive. Also, its working range is at higher temperatures than the soft glasses, requiring the use of oxygen/gas flames instead of air/gas. In addition to producing a hotter flame, the use of pure oxygen allows more control over the flame's oxidizing or reducing properties, which is necessary because some coloring chemicals in borosilicate glass react with any remaining oxygen in the flame either to produce the desired final color or to discolor if extra oxygen is present.

Lead glass has the broadest working range of the three glasses, and holds its heat better when it is out of the flame. This gives one more time to adjust one's work when blowing hollow forms. It is also less likely to crack while being worked in making pieces of variable thickness than is soda-lime glass.


Types of glass

Raw materials

Glass is available in a wide range of shapes, sizes, and colors for the lampworker. Most lampworkers use glass produced by commercial manufactures in the shape of rod, tube, sheet or frit. Glass rods are manufactured in various sizes, as small as 1 mm and as large as 50 mm or more. Glass rod is also made in different shapes like: square, triangle or half round rod. Glass tubes are also offered in a range of diameters, colors, and profiles like: scalloped, twisted or lined tubing. Crushed glass particles that have been sifted to specific sizes are known as frit or power. Sheet glass is produced in varying thickness and can be cut and shaped before being worked in the flame. The glass industry has seen steady growth in the past few decades that continues to expand the types and forms of glass available to lampworkers.

Soda lime glass

The most popular glass for lampworking is soda-lime glass, which is available pre-colored. Soda-lime glass is the traditional mix used in blown furnace glass, and lampworking glass rods were originally hand-drawn from the furnace and allowed to cool for use by lampworkers. Today soda-lime, or "soft" glass is manufactured globally, including Italy, Germany, Czech Republic, China and America.

Lead

In addition to soda lime glass, lampworkers can use lead glass. Lead glasses are distinguished by their lower viscosity, heavier weight, and somewhat greater tolerance for COE mismatches.

Borosilicate

Lampworkers often use borosilicate glass, a very hard glass requiring greater heat. Borosilicate originated as laboratory glass, but it has recently become available in color to the studio artist from a number of companies. At one time, soft (soda lime and lead) and hard (borosilicate) glasses had distinctly different looking palettes, but demand by soft-glass artists for the silver strike colors, and the development of the bright, cadmium based `crayon colors' by Glass Alchemy in the boro line, has diminished the distinctions between them.

Quartz

Lampworkers can also work with fused quartz tube and rod. A hydrogen and oxygen torch is used to work quartz as requires higher temperatures than other types of glass. Quartz is resistant to extreme temperature variations and chemical corrosion, making it especially useful in scientific applications. Quartz has recently gained popularity in artistic glass work but is only available a few limited colors.


Tools

Itinerant glassworker exhibition with spinning wheel and steam engine, 1904 Itinerant glassworker exhibition with spinning wheel and steam engine.jpg
Itinerant glassworker exhibition with spinning wheel and steam engine, 1904

Tools for lampworking are similar to those used in glassblowing. Graphite is frequently used for the working surfaces of lampworking tools because of its ability to withstand high temperatures, low coefficient of friction, and resistance to sticking to the molten glass. Steel is used where greater strength is required. Some molds may be made from fruitwoods, but primarily wood is used for handles of lampworking tools. Brass may be used for working surfaces where a higher coefficient of friction is desired.

General methods of beadmaking

Demonstration of the lampworking process Lampworking.png
Demonstration of the lampworking process

After designing a piece, a lampworker must plan how to construct it. Once ready to begin, the lampworker slowly introduces glass rod or tubing into the flame to prevent cracking from thermal shock. The glass is heated until molten and wound around a specially coated steel mandrel, forming the base bead. The coating is an anti-fluxing bead release agent that will allow the bead to be easily removed from the mandrel, either a clay-based substance or boron nitride. It can then be embellished or decorated using a variety of techniques and materials. All parts of the workpiece must be kept at similar temperatures lest they shatter. Once finished, the piece must be annealed in an kiln to prevent cracking or shattering.

Annealing, in glass terms, is heating a piece until its temperature reaches a stress-relief point; that is, a temperature at which the glass is still too hard to deform, but is soft enough for internal stresses to ease. The piece is then allowed to heat-soak until its temperature is uniform throughout. The time necessary for this depends on the type of glass and thickness of the thickest section. The piece is then slowly cooled at a predetermined rate until its temperature is below a critical point, (between 900 and 1000 degrees Fahrenheit), at which it cannot generate internal stresses, and then can safely be dropped to room temperature. This relieves the internal stresses, resulting in a piece which should last for many years. Glass that has not been annealed may crack or shatter due to a seemingly minor temperature change or other shock.


Additional techniques for lampworked beads

Beads can be sandblasted, or they can be faceted, using lapidary techniques. "Furnace glass" beads, which are more elaborate versions of the old Seed bead technique, are widely made today. Chevron beads are multi-layer beads once exclusively made using hot-shop techniques to produce the original tubing; but now some lampworkers make similar designs on their torches before lapping the ends to reveal the various layered colors. As torches get bigger and more powerful, the cross-over between lampworking and furnace glass continues to increase.

Fuming is a technique that has been developed and popularized by Bob Snodgrass since the 70's and 80's. Fuming consists of heating silver or gold in the flame, so that the metals vaporize or "fume" microscopically thin layers of particles onto the glass. These particles stick to the hot glass surface changing its color with interesting effects. Silver turns clear glass into a yellowish color, giving shades of blues and greens when backed with a dark color, while gold turns clear glass shades of pinks and reds. The precious metal coating becomes increasingly visible the more the glass is fumed.

Brief history of modern lampworked beads

Lampworked beads (with the exception of Asian and African beadmaking) have generally been for the last four hundred years or so the province of Italian, and, later, Bohemian lampworkers who kept the techniques secret. Thirty or so years ago, some American artists started experimenting with the form. Their early efforts, by today's standards, were crude, as there was almost no documentation, and none of the modern tools. However, they shared their information, and some of them started small businesses developing tools, torches and other equipment.

This group eventually formed the basis for the International Society of Glass Beadmakers. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Glass</span> Transparent non-crystalline solid material

Glass is a non-crystalline solid that is often transparent, brittle and chemically inert. It has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics.

<span class="mw-page-title-main">Laboratory glassware</span> Variety of equipment usually made of glass used for scientific experiments

Laboratory glassware refers to a variety of equipment used in scientific work, and traditionally made of glass. Glass can be blown, bent, cut, molded, and formed into many sizes and shapes, and is therefore common in chemistry, biology, and analytical laboratories. Many laboratories have training programs to demonstrate how glassware is used and to alert first–time users to the safety hazards involved with using glassware.

<span class="mw-page-title-main">Heat treating</span> Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

<span class="mw-page-title-main">Glassblowing</span> Technique for forming glass

Glassblowing is a glassforming technique that involves inflating molten glass into a bubble with the aid of a blowpipe. A person who blows glass is called a glassblower, glassmith, or gaffer. A lampworker manipulates glass with the use of a torch on a smaller scale, such as in producing precision laboratory glassware out of borosilicate glass.

<span class="mw-page-title-main">Studio glass</span> Modern use of glass as an artistic medium

Studio glass is the modern use of glass as an artistic medium to produce sculptures or three-dimensional artworks. The glass objects created are intended to make a sculptural or decorative statement. Though usage varies, the term is properly restricted to glass made as art in small workshops, typically with the personal involvement of the artist who designed the piece. This is in contrast to art glass, made by craftsmen in factories, and glass art, covering the whole range of glass with artistic interest made throughout history. Both art glass and studio glass originate in the 19th century, and the terms compare with studio pottery and art pottery, but in glass the term "studio glass" is mostly used for work made in the period beginning in the 1960s with a major revival in interest in artistic glassmaking.

<span class="mw-page-title-main">Fused quartz</span> Glass consisting of pure silica

Fused quartz,fused silica or quartz glass is a glass consisting of almost pure silica (silicon dioxide, SiO2) in amorphous (non-crystalline) form. This differs from all other commercial glasses in which other ingredients are added which change the glasses' optical and physical properties, such as lowering the melt temperature. Fused quartz, therefore, has high working and melting temperatures, making it less desirable for most common applications.

<span class="mw-page-title-main">Fernico</span>

Fernico describe a family of metal alloys made primarily of iron, nickel and cobalt. The family includes Kovar, FerNiCo I, FerNiCo II, and Dumet. The name is made up of the chemical symbols of its constituent three elements. "Dumet" is a portmanteau of "dual" and "metal," because it is a heterogeneous alloy, usually fabricated in the form of a wire with an alloy core and a copper cladding. These alloys possess the properties of electrical conductivity, minimal oxidation and formation of porous surfaces at working temperatures of glass and thermal coefficients of expansion which match glass closely. These requirements allow the alloys to be used in glass seals, such that the seal does not crack, fracture or leak with changes in temperature.

<span class="mw-page-title-main">Borosilicate glass</span> Glass made of silica and boron trioxide

Borosilicate glass is a type of glass with silica and boron trioxide as the main glass-forming constituents. Borosilicate glasses are known for having very low coefficients of thermal expansion, making them more resistant to thermal shock than any other common glass. Such glass is subjected to less thermal stress and can withstand temperature differentials without fracturing of about 165 °C (300 °F). It is commonly used for the construction of reagent bottles and flasks, as well as lighting, electronics, and cookware.

Glass tubes are mainly cylindrical hollow-wares. Their special shape combined with the huge variety of glass types, allows the use of glass tubing in many applications. For example, laboratory glassware, lighting applications, solar thermal systems and pharmaceutical packaging to name the largest.

<span class="mw-page-title-main">Glass bead making</span>

Glass bead making has long traditions, with the oldest known beads dating over 3,000 years. Glass beads have been dated back to at least Roman times. Perhaps the earliest glass-like beads were Egyptian faience beads, a form of clay bead with a self-forming vitreous coating. Glass beads are significant in archaeology because the presence of glass beads often indicate that there was trade and that the bead making technology was being spread. In addition, the composition of the glass beads could be analyzed and help archaeologists understand the sources of the beads.

<span class="mw-page-title-main">Blowpipe (tool)</span> Tool used to direct a stream of gas

The term blowpipe refers to one of several tools used to direct streams of gases into any of several working media.

<span class="mw-page-title-main">Glass fusing</span> Joining together of pieces of glass at high temperature

Glass fusing is the joining together of pieces of glass at high temperature, usually in a kiln. This is usually done roughly between 700 °C (1,292 °F) and 820 °C (1,510 °F), and can range from tack fusing at lower temperatures, in which separate pieces of glass stick together but still retain their individual shapes, to full fusing at higher ones, in which separate pieces merge smoothly into one another.

<span class="mw-page-title-main">Soda–lime glass</span> Type of glass

Soda–lime glass, also called soda–lime–silica glass, is the most prevalent type of glass, used for windowpanes and glass containers for beverages, food, and some commodity items. Some glass bakeware is made of soda-lime glass, as opposed to the more common borosilicate glass. Soda–lime glass accounts for about 90% of manufactured glass.

<span class="mw-page-title-main">Egyptian faience</span> Type of Ancient Egyptian sintered-quartz ceramic

Egyptian faience is a sintered-quartz ceramic material from Ancient Egypt. The sintering process "covered [the material] with a true vitreous coating" as the quartz underwent vitrification, creating a bright lustre of various colours "usually in a transparent blue or green isotropic glass". Its name in the Ancient Egyptian language was tjehenet, and modern archeological terms for it include sintered quartz, glazed frit, and glazed composition. Tjehenet is distinct from the crystalline pigment Egyptian blue, for which it has sometimes incorrectly been used as a synonym.

<span class="mw-page-title-main">Murano beads</span>

Murano beads are intricate glass beads influenced by Venetian glass artists. Since 1291, Murano glassmakers have refined technologies for producing beads and glasswork such as crystalline glass, enamelled glass (smalto), glass with threads of gold (aventurine), multicolored glass (millefiori), milk glass (lattimo) and imitation gemstones made of glass.

<span class="mw-page-title-main">Caneworking</span> Glassblowing technique

In glassblowing, cane refers to rods of glass with color; these rods can be simple, containing a single color, or they can be complex and contain strands of one or several colors in pattern. Caneworking refers to the process of making cane, and also to the use of pieces of cane, lengthwise, in the blowing process to add intricate, often spiral, patterns and stripes to vessels or other blown glass objects. Cane is also used to make murrine, thin discs cut from the cane in cross-section that are also added to blown or hot-worked objects. A particular form of murrine glasswork is millefiori, in which many murrine with a flower-like or star-shaped cross-section are included in a blown glass piece.

<span class="mw-page-title-main">Glass-to-metal seal</span> Airtight seal which joins glass and metal surfaces

Glass-to-metal seals are a type of mechanical seal which joins glass and metal surfaces. They are very important elements in the construction of vacuum tubes, electric discharge tubes, incandescent light bulbs, glass-encapsulated semiconductor diodes, reed switches, glass windows in metal cases, and metal or ceramic packages of electronic components.

Glass production involves two main methods – the float glass process that produces sheet glass, and glassblowing that produces bottles and other containers. It has been done in a variety of ways during the history of glass.

A glossary of terms used in glass art

Effetre glass, once known as Moretti glass, is a kind of glass used in lampworking. It is considered a medium-soft glass and is popular because of its wide range of colors and the ease with which it is molded and shaped when hot. Genuine Effetre glass is made in Italy by the Effetre Murano S.r.l, on the island of Murano. It has a working temperature of 1,733 °F (945 °C) and a coefficient of expansion value of 104. Effetre is a variety of soda-lime glass.

References

  1. Lierke, Rosemary, "Early History of Lampwork – Some Facts, Findings, and Theories," Glastech.Ber.65, 1992: p. 342.
  2. Hopman, Rebecca (10 June 2019). "What is an itinerant glassworker?". Gathering A Crowd. Retrieved 29 January 2020.
  3. "Glass Dictionary: Flameworking". Corning Museum of Glass. Corning Museum of Glass. Retrieved 29 January 2020.
  4. "ISGB - International Society of Glass Beadmakers". www.isgb.org.

Further reading