This article needs additional citations for verification .(January 2009) |
Tempered or toughened glass is a type of safety glass processed by controlled thermal or chemical treatments to increase its strength compared with normal glass. Tempering puts the outer surfaces into compression and the interior into tension. Such stresses cause the glass, when broken, to shatter into small granular chunks instead of splintering into large jagged shards as ordinary annealed glass does. These smaller, granular chunks are less likely to cause deep penetration when forced into the surface of an object (e.g. by gravity, by wind, by falling onto them, etc.) compared to larger, jagged shards because the reduction in both the mass and the maximum dimension of a glass fragment corresponds with a reduction in both the momentum and the penetration depth of the glass fragment.
Tempered glass is used for its safety and strength in a variety of applications, including passenger vehicle windows (apart from windshield), shower doors, aquariums, architectural glass doors and tables, refrigerator trays, mobile phone screen protectors, bulletproof glass components, diving masks, and plates and cookware.
Tempered glass is about four times stronger than annealed glass. [1] [2] The more rapid contraction of the outer layer during manufacturing induces compressive stresses in the surface of the glass balanced by tensile stresses in the body of the glass. Fully tempered 6-mm thick glass must have either a minimum surface compression of 69 MPa (10 000 psi) or an edge compression of not less than 67 MPa (9 700 psi). [3] For it to be considered safety glass, the surface compressive stress should exceed 100 megapascals (15,000 psi). As a result of the increased surface stress, when broken the glass breaks into small rounded chunks as opposed to sharp jagged shards.
Compressive surface stresses give tempered glass increased strength. Annealed glass has almost no internal stress and usually forms microscopic cracks on its surface. Tension applied to the glass can drive crack propagation which, once begun, concentrates tension at the tip of the crack driving crack propagation at very high speeds.[ citation needed ] Consequently, annealed glass is fragile and breaks into irregular and sharp pieces. [4] The compressive stresses on the surface of tempered glass contain flaws, preventing their propagation or expansion.
Any cutting or grinding must be done prior to tempering. Cutting, grinding, and sharp impacts after tempering will cause the glass to fracture.
The strain pattern resulting from tempering can be observed by viewing through an optical polarizer, such as a pair of polarizing sunglasses.
Tempered glass is used when strength, thermal resistance, and safety are important considerations. Passenger vehicles, for example, have all three requirements. Since they are stored outdoors, they are subject to constant heating and cooling as well as dramatic temperature changes throughout the year. Moreover, they must withstand small impacts from road debris such as stones as well as road accidents. Because large, sharp glass shards would present additional and unacceptable danger to passengers, tempered glass is used so that if broken, the pieces are blunt and mostly harmless. The windscreen or windshield is instead made of laminated glass, which will not shatter into pieces when broken while side windows and the rear windshield have historically been made of tempered glass. Some newer luxury vehicles have laminated side windows to meet occupant retention regulations, anti-theft purposes, or sound-deadening purposes.
Other typical applications of tempered glass include:
Tempered glass is also used in buildings for unframed assemblies (such as frameless glass doors), structurally loaded applications, and any other application that would become dangerous in the event of human impact. Building codes in the United States require tempered or laminated glass in several situations including some skylights, glass installed near doorways and stairways, large windows, windows which extend close to floor level, sliding doors, elevators, fire department access panels, and glass installed near swimming pools. [5]
Tempered glass is also used in the home. Some common household furniture and appliances that use tempered glass are frameless shower doors, glass table tops, glass shelves, cabinet glass and glass for fireplaces.
This section needs additional citations for verification .(May 2017) |
"Rim-tempered" indicates that a limited area, such as the rim of the glass or plate, is tempered, and is popular in food service. There are also fully tempered variants for strength and thermal shock resistance. Some countries specify requirements regarding this.
Tempered glass has also seen increased usage in bars and pubs, particularly in the United Kingdom and Australia, to prevent broken glass being used as a weapon. [6] [7]
Some forms of tempered glass are used for cooking and baking. Manufacturers and brands include Glasslock, Pyrex, Corelle, and Arc International. This is also the type of glass used for oven doors.
Most touchscreen mobile devices use some form of toughened glass (such as Corning's Gorilla Glass), but there are also separate tempered screen protectors for touchscreen devices sold as an accessory. [8]
Tempered glass can be made from annealed glass via a thermal tempering process. The glass is placed onto a roller table, taking it through a furnace that heats it well above its transition temperature of 564 °C (1,047 °F) to around 620 °C (1,148 °F). The glass is then rapidly cooled with forced air drafts while the inner portion remains free to flow for a short time.
An alternative chemical toughening process involves forcing a surface layer of glass at least 0.1 mm thick into compression by ion exchange of the sodium ions in the glass surface with potassium ions (which are 30% larger), by immersion of the glass into a bath of molten potassium nitrate. Chemical toughening results in increased toughness compared with thermal tempering and can be applied to glass objects of complex shapes. [9]
Tempered glass must be cut to size or pressed to shape before tempering, and cannot be re-worked once tempered. Polishing the edges or drilling holes in the glass is carried out before the tempering process starts. Because of the balanced stresses in the glass, damage to any portion will eventually result in the glass shattering into thumbnail-sized pieces. The glass is most susceptible to breakage due to damage at its edge, where the tensile stress is the greatest, but can also shatter in the event of a hard impact in the middle of the glass pane or if the impact is concentrated (for example, the glass is struck with a hardened point).
Using tempered glass can pose a security risk in some situations because of the tendency of the glass to shatter completely upon hard impact rather than leaving shards in the window frame. [10]
The surface of tempered glass does exhibit surface waves caused by contact with flattening rollers, if it has been formed using this process. This waviness is a significant problem in manufacturing of thin film solar cells. [11] The float glass process can be used to provide low-distortion sheets with very flat and parallel surfaces as an alternative for different glazing applications. [12]
Spontaneous glass breakage is a phenomenon by which tempered glass may spontaneously break without any apparent reason. The most common causes are: [13] [14]
Any breakage problem has more severe consequences where the glass is installed overhead or in public areas (such as in high-rise buildings). A safety window film can be applied to the tempered panes of glass to protect from its falling. An old-fashioned precaution was to install metal screens below skylights.
Francois Barthelemy Alfred Royer de la Bastie (1830–1901) of Paris, France is credited with first developing a method of tempering glass [16] by quenching almost molten glass in a heated bath of oil or grease in 1874, the method patented in England on August 12, 1874, patent number 2783. Tempered glass is sometimes known as Bastie glass after de la Bastie. In 1877 the German Friedrich Siemens developed a different process, sometimes called compressed glass or Siemens glass, producing a tempered glass stronger than the Bastie process by pressing the glass in cool molds. [17] The first patent on a whole process to make tempered glass was held by chemist Rudolph A. Seiden who was born in 1900 in Austria and emigrated to the United States in 1935. [18]
Though the underlying mechanism was not known at the time, the effects of "tempering" glass have been known for centuries. In about 1660, Prince Rupert of the Rhine brought the discovery of what are now known as "Prince Rupert's Drops" to the attention of King Charles II. These are teardrop-shaped bits of glass which are produced by allowing a molten drop of glass to fall into a bucket of water, thereby rapidly cooling it. They can withstand a blow from a hammer on the bulbous end without breaking, but the drops will disintegrate explosively into powder if the tail end is even slightly damaged.
Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.
Carbon steel is a steel with carbon content from about 0.05 up to 2.1 percent by weight. The definition of carbon steel from the American Iron and Steel Institute (AISI) states:
A curtain wall is an exterior covering of a building in which the outer walls are non-structural, instead serving to protect the interior of the building from the elements. Because the curtain wall façade carries no structural load beyond its own dead load weight, it can be made of lightweight materials. The wall transfers lateral wind loads upon it to the main building structure through connections at floors or columns of the building.
Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form, and eventually lead to structural failure.
Prince Rupert's drops are toughened glass beads created by dripping molten glass into cold water, which causes it to solidify into a tadpole-shaped droplet with a long, thin tail. These droplets are characterized internally by very high residual stresses, which give rise to counter-intuitive properties, such as the ability to withstand a blow from a hammer or a bullet on the bulbous end without breaking, while exhibiting explosive disintegration if the tail end is even slightly damaged. In nature, similar structures are produced under certain conditions in volcanic lava, and are known as Pele's tears.
Tempering is a process of heat treating, which is used to increase the toughness of iron-based alloys. Tempering is usually performed after hardening, to reduce some of the excess hardness, and is done by heating the metal to some temperature below the critical point for a certain period of time, then allowing it to cool in still air. The exact temperature determines the amount of hardness removed, and depends on both the specific composition of the alloy and on the desired properties in the finished product. For instance, very hard tools are often tempered at low temperatures, while springs are tempered at much higher temperatures.
In materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones. However, unintended residual stress in a designed structure may cause it to fail prematurely.
In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.
Annealing is a process of slowly cooling hot glass objects after they have been formed, to relieve residual internal stresses introduced during manufacture. Especially for smaller, simpler objects, annealing may be incidental to the process of manufacture, but in larger or more complex products it commonly demands a special process of annealing in a temperature-controlled kiln known as a lehr. Annealing of glass is critical to its durability. Glass that has not been properly annealed retains thermal stresses caused by quenching, which will indefinitely decrease the strength and reliability of the product. Inadequately annealed glass is likely to crack or shatter when subjected to relatively small temperature changes or to mechanical shock or stress. It even may fail spontaneously.
Ninja rocks is a colloquial term for an improvised weapon or tool consisting of the extremely sharp porcelain or ceramic shards recovered from smashing or crushing the alumina insulator of a commercial spark plug. When thrown, ninja rocks are known to exploit the tensile stress present in the side windows on most cars in order to instantly shatter them, providing a quick and quiet alternative to other window-smashing methods and making ninja rocks ideal for emergencies or "smash-and-grab" auto burglaries, having been used in the latter function since at least 1995. They have no traditional association with the ninja or ninjutsu, only being named such due to their "silent but deadly" function in burglaries and a superficial resemblance to the shuriken stereotypically used as a throwing weapon by ninjas.
Safety glass is glass with additional safety features that make it less likely to break, or less likely to pose a threat when broken. Common designs include toughened glass, laminated glass, and wire mesh glass. Toughened glass was invented in 1874 by Francois Barthelemy Alfred Royer de la Bastie. Wire mesh glass was invented in 1892 by Frank Shuman. Laminated glass was invented in 1903 by the French chemist Édouard Bénédictus (1878–1930).
Architectural glass is glass that is used as a building material. It is most typically used as transparent glazing material in the building envelope, including windows in the external walls. Glass is also used for internal partitions and as an architectural feature. When used in buildings, glass is often of a safety type, which include reinforced, toughened and laminated glasses.
6061 aluminium alloy is a precipitation-hardened aluminium alloy, containing magnesium and silicon as its major alloying elements. Originally called "Alloy 61S", it was developed in 1935. It has good mechanical properties, exhibits good weldability, and is very commonly extruded. It is one of the most common alloys of aluminium for general-purpose use.
Safety and security window films are polyester or PET films that are applied to glass and glazing in order to hold them together if the glass is shattered. The main difference between film and laminated glass is that these shatter safe films can be applied to the glass or glazing after manufacture or installation. I.e., these films are retrofit products. These films are used widely all over the world; they can be found on trains, buses, cars, and buildings.
A Bologna bottle, also known as a Bologna phial or philosophical vial, is a glass bottle which has great external strength, often used in physics demonstrations and magic tricks. The exterior is generally strong enough that one could pound a nail into a block of wood using the bottle as a hammer; however, even a small scratch on the interior would cause it to crumble.
Chemically strengthened glass is a type of glass that has increased strength as a result of a post-production chemical process. When broken, it still shatters in long pointed splinters similar to float glass. For this reason, it is not considered a safety glass and must be laminated if safety glass is required. However, chemically strengthened glass is typically six to eight times the strength of float glass. The most common trademark for this kind of glass is Gorilla glass.
Glass-to-metal seals are a type of mechanical seal which joins glass and metal surfaces. They are very important elements in the construction of vacuum tubes, electric discharge tubes, incandescent light bulbs, glass-encapsulated semiconductor diodes, reed switches, glass windows in metal cases, and metal or ceramic packages of electronic components.
Glass production involves two main methods – the float glass process that produces sheet glass, and glassblowing that produces bottles and other containers. It has been done in a variety of ways during the history of glass.
Insulating glass (IG) consists of two or more glass window panes separated by a space to reduce heat transfer across a part of the building envelope. A window with insulating glass is commonly known as double glazing or a double-paned window, triple glazing or a triple-paned window, or quadruple glazing or a quadruple-paned window, depending upon how many panes of glass are used in its construction.
Thermal fracturing in glass occurs when a sufficient temperature differential is created within glass. As a warmed area expands or a cooled area contracts, stress forces develop, potentially leading to fracture. A temperature differential may be created in many ways, including solar heating, space heating devices, fire, or hot and cold liquids. Sloping glass surfaces are subject to greater solar radiation than vertical surfaces and so are more prone to solar thermal fracture. In framed window glass, the edges are relatively cooler than the exposed areas, so space heating devices in very close proximity may cause thermal fracture.
The security value of tempered glass, however, is questionable. Although it will resist a brick or rock, it is susceptible to sharp instruments such as ice picks or screwdrivers. When attacked in this manner, tempered glass tends to crumple easily and quietly, leaving no sharp edges.
{{cite web}}
: CS1 maint: archived copy as title (link) accessed February 28, 2015