ZBLAN

Last updated
ZBLAN glass samples. The different colors correspond to different compositions of glass. From left to right: praseodymium doped, erbium doped and non-doped ZBLAN glasses. Doped glasses.jpg
ZBLAN glass samples. The different colors correspond to different compositions of glass. From left to right: praseodymium doped, erbium doped and non-doped ZBLAN glasses.

ZBLAN is the most stable, and consequently the most used, fluoride glass, a subcategory of the heavy metal fluoride glass (HMFG) group. Typically its composition is 53% ZrF4, 20% BaF2, 4% LaF3, 3% AlF3 and 20% NaF. ZBLAN is not a single material but rather has a spectrum of compositions, many of which are still untried. The biggest library in the world of ZBLAN glass compositions is currently owned by Le Verre Fluore, the oldest company working on HMFG technology. Other current ZBLAN fiber manufacturers are Thorlabs and KDD Fiberlabs. Hafnium fluoride is chemically similar to zirconium fluoride, and is sometimes used in place of it.

Contents

ZBLAN glass has a broad optical transmission window extending from 0.22 micrometers in the UV to 7 micrometers in the infrared. ZBLAN has low refractive index (about 1.5), a relatively low glass transition temperature (Tg) of 260–300 °C, low dispersion and a low and negative temperature dependence of refractive index dn/dT. [1]

History

The first fluorozirconate glass was a serendipitous discovery in March 1974 by the Poulain brothers and their co-workers at the University of Rennes in France. [2]

While looking for new crystalline complex fluorides, they obtained unexpected pieces of glass. In a first step, these glasses were investigated for spectroscopic purposes.

Glass formation was studied in the ZrF4-BaF2-NaF ternary system while the fluorescence of neodymium was characterized in quaternary ZrF4-BaF2-NaF-NdF3 bulk samples. The chemical composition of this original glass was very close to that of the classical ZBLAN, on the basis of a simple La/Nd substitution.

Further experimental work led to major advances. First, ammonium bifluoride processing replaced the initial preparation method based on heat treatment of anhydrous fluorides in a metallic sealed tube. This process was already used by K. H. Sun, a pioneer of beryllium fluoride glasses. It offers significant advantages: preparation is implemented at room atmosphere in long platinum crucibles, zirconium oxide can be used as a starting material instead of pure ZrF4, synthesis time is reduced from 15 hours to less than one hour, and larger samples are obtained. One of the problems encountered was the devitrification tendency upon cooling the melt.

The second breakthrough was the discovery of the stabilizing effect of aluminum fluoride in fluorozirconate glasses. The initial systems were fluorozirconates with ZrF4 as the primary constituent (>50 mol%), BaF2 main modifier (>30 mol%) and other metal fluorides LaF3, AlF3 added as tertiary constituents, to increase glass stability or improve other glass properties. Various pseudo-ternary systems were investigated at 4 mol% AlF3, leading to the definition of 7 stable glasses, such as ZBNA, ZBLA, ZBYA, ZBCA that could be cast as multi-kilogram bulk samples and resulted later in the classical ZBLAN glass composition that combines ZBNA and ZBLA.

Further development on preparation method, scale-up, improvements of the manufacturing process, material stability and formulations was largely motivated by the experiments in French telecom at that time that found that intrinsic absorption for ZBLAN fibers was quite low (~10 dB/km) which could lead to an ultra-low optical loss solution in the mid-infrared. Such optical fibers could then become an excellent technical solution for a variety of systems for telecommunications, sensing and other applications. [3]

Glass preparation

Fluoride glasses have to be processed in a very dry atmosphere in order to avoid oxyfluoride formation which will lead to glass-ceramic (crystallized glass) formation. The material is usually manufactured by the melting-quenching method. First the raw products are introduced in a platinum crucible, then melted, fined above 800 °C and cast in a metallic mold to ensure a high cooling rate (quenching), which favors glass formation. Finally they are annealed in a furnace to reduce the thermal stresses induced during the quenching phase. This process results in large transparent pieces of fluoride glass.

Material properties

Optical

The most obvious feature of fluoride glasses is their extended transmission range. It covers a broad optical spectrum from the UV to the mid-infrared.

The polarisability of fluorine anions is smaller than that of oxygen anions. For this reason, the refractive index of crystalline fluorides is generally low. This also applies to fluoride glasses: the index of ZBLAN glass is close to 1.5 while it exceeds 2 for zirconia ZrO2. Cationic polarisability must also be considered. The general trend is that it increases with atomic number. Thus in crystals, the refractive index of lithium fluoride LiF is 1.39 while it is 1.72 for lead fluoride PbF2. One exception concerns fluorozirconate glasses: hafnium is chemically very close to zirconium, but with a much larger atomic mass (178 g vs 91 g); but the refractive index of fluorohafnate glasses is smaller than that of fluorozirconates with the same molar composition. This is classically explained by the well known lanthanidic contraction that results from the filling of the f subshell and leads to a smaller ionic radius. Substituting zirconium by hafnium makes an easy way to adjust the numerical aperture of optical fibers.

Optical dispersion expresses the variation of the refractive index with wavelength. It is expected to be low for glasses with a small refractive index. In the visible spectrum it is often quantified by the Abbe number. ZBLAN exhibits zero dispersion at about 1.72 µm, compared with 1.5 µm for silica glass.

Refractive index changes with temperature because the polarisability of the chemical bonds increases with temperature, and because thermal expansion decreases the number of polarisable elements per unit volume. As a result, dn/dT is positive for silica, while it is negative for fluoride glasses.

At high power densities, refractive index follows the relation :

n = n0 + n2I

where n0 is the index observed at low power levels, n2 the nonlinear index and I the average electromagnetic field. Nonlinearity is smaller in low-index materials. In ZBLAN n2's value lies between 1 and 2×10−20 m2W−1.

Thermal

The glass transition temperature Tg is the major characteristic temperature of a glass. It corresponds to the transition between solid state and liquid state. At temperatures higher than Tg, glass is not rigid: its shape will change under external strain or even under its own weight. For ZBLAN, Tg ranges from 250 to 300 °C, depending on composition; mainly sodium content.

Beyond Tg, molten glass becomes prone to devitrification. This transformation is commonly evidenced by differential thermal analysis (DTA). Two characteristic temperatures are measured from the DTA curve: Tx corresponds to the onset of crystallization and Tc is taken at the maximum of the exothermic peak. Glass scientists also use liquidus temperature TL. Beyond this temperature liquid does not produce any crystal and it may remain indefinitely in the liquid state.

Thermal expansion data have been reported for a number of fluoride glasses, in the temperature range between ambient and Tg. In this range, as for most glasses, expansion is almost linearly dependent on temperature.

Mechanical

Fiber optics

Thanks to their glassy state, ZBLAN can be drawn into optical fibers, using two glass compositions with different refractive indices to ensure guidance: the core glass and the cladding glass. It is critical to the quality of the manufactured fiber to ensure that during the fiber drawing process the drawing temperature and the humidity of the environment are highly controlled. In contrast to other glasses, the temperature dependence of ZBLAN's viscosity is very steep.

ZBLAN fiber manufacturers have demonstrated significant increases in mechanical properties (>100 kpsi or 700 MPa for 125 µm fiber) and attenuation as low as 3 dB/km at 2.6 µm. ZBLAN optical fibers are used in different applications such as spectroscopy and sensing, laser power delivery and fiber lasers and amplifiers.[ citation needed ]

Comparison with alternative fiber technologies

Experimental attenuation curve of low-loss multimode silica and ZBLAN fiber Si ZBLAN comparison.jpg
Experimental attenuation curve of low-loss multimode silica and ZBLAN fiber

Early silica optical fiber had attenuation coefficients on the order of 1000 dB/km, as reported in 1965. [4] Kapron at al reported in 1970 fibers having an attenuation coefficient of ~20 dB/km at 0.632 µm, [5] and Miya et al. reported in 1979 ~0.2 dB/km attenuation at 1.550 µm. [6] Nowadays, silica optical fibers are routinely manufactured with an attenuation of <0.2 dB/km with Nagayama et al. reporting in 2002 an attenuation coefficient as low as 0.151 dB/km at 1.568 µm. [7] The four order of magnitude reduction in the attenuation of silica optical fibers over four decades was the result of constant improvement of manufacturing processes, raw material purity, and improved preform and fiber designs, which allowed these fibers to approach the theoretical lower limit of attenuation.

The advantages of ZBLAN over silica are: superior transmittance (especially in the UV and IR), higher bandwidth for signal transmission, spectral broadening (or supercontinuum generation) and low chromatic dispersion.

Theoretical loss spectra (attenuation, dB/km) for a typical ZBLAN optical fiber (solid gray line) as function of wavelength (microns) Si ZBLAN Theoretical Transmission.jpg
Theoretical loss spectra (attenuation, dB/km) for a typical ZBLAN optical fiber (solid gray line) as function of wavelength (microns)

The graph at right compares, as a function of wavelength, the theoretical predicted attenuation (dB/km) of silica (dashed blue line) with a typical ZBLAN formulation (solid gray line) as constructed from the dominant contributions: Rayleigh scattering (dashed gray line), infrared (IR) absorption (dashed black line) and UV absorption (dotted gray line).

The difficulties that the community encountered when trying to use heavy metal fluoride glasses in the early years of development for a variety of applications were mostly related to the fragility of the fibers, a major drawback that prevented their broader adoption. However, the developers and manufacturers have dedicated significant effort in the last two decades to better understand the underlying causes of fiber fragility. The original fiber failure was primarily caused by surface defects, largely related to crystallization due to nucleation and growth, phenomena induced by factors such as raw material impurities and environmental conditions (humidity of the atmosphere during drawing, atmospheric pollutants such as vapors and dust, etc.) during processing. The particular focus on processing improvements has resulted in a 10× increase in the fiber strength. Compared to silica fiber, the intrinsic fiber strength of HMFG is currently only a factor of 2–3 lower. For example, the breaking radius of a standard 125 µm single-mode fiber is < 1.5 mm for silica and < 4 mm for ZBLAN. The technology has evolved such that HMFG fibers can be jacketed to ensure that the bending radius of the cable will never reach the breaking point and thus comply with industrial requirements. The product catalogs usually call out a safe bending radius to ensure that end users handling the fiber stay within the safe margins. [8]

Contrary to current opinion fluoride glasses are very stable even in humid atmospheres and usually don't require dry storage as long as water will remain in the vapor phase (i.e. not being condensed on the fiber). Problems arise when the surface of the fiber comes in direct contact with liquid water (the polymeric coating usually applied to the fibers is permeable to water allowing water to diffuse through it). Current storage and transportation techniques require a very simple packaging strategy: the fiber spools are usually sealed with plastic together with a desiccant to avoid water condensation on the fiber. Studies of water attack on HMFG have shown that prolonged (> 1 hour) contact with water induces a drop in the pH of the solution which in turn increases the rate of the attack of water (the rate of attack of water increases with decreased pH). The leach rate of ZBLAN in water at pH = 8 is 10−5 g·cm2/day with five orders of magnitude decrease between pH = 2 and pH = 8. [9] The particular sensitivity of HMFG fibers such as ZBLAN to water is due to the chemical reaction between water molecules and the F anions which leads to the slow dissolution of the fibers. Silica fibers have a similar vulnerability to hydrofluoric acid, HF, which induces direct attack on the fibers leading to their breakup. Atmospheric moisture has a very limited effect on fluoride glasses in general, and fluoride glass/fibers can be used in a wide range of operating environments over extended periods of time without any material degradation. [10]

ZBLAN produced with the same equipment in zero gravity (left) and in normal gravity (right) Zblangrowth.jpg
ZBLAN produced with the same equipment in zero gravity (left) and in normal gravity (right)

A large variety of multicomponent fluoride glasses have been fabricated but few can be drawn into optical fiber. The fiber fabrication is similar to any glass-fiber drawing technology. All methods involve fabrication from the melt, which creates inherent problems such as the formation of bubbles, core-clad interface irregularities, and small preform sizes. The process occurs at 310 °C in a controlled atmosphere (to minimize contamination by moisture or oxygen impurities which significantly weaken the fiber) using a narrow heat zone compared to silica. [1] Drawing is complicated by a small difference (only 124 °C) between the glass transition temperature and the crystallization temperature. As a result, ZBLAN fibers often contain undesired crystallites. The concentration of crystallites was shown in 1998 to be reduced by making ZBLAN in zero gravity (see figure). [11] One hypothesis is that microgravity suppresses convection in the atmosphere surrounding the fiber during the drawing process, leading to the formation of fewer crystallites. [12] One recent experiment [13] aims to examine whether electrostatically levitated ZBLAN fibers can be made to exhibit properties similar to those obtained in microgravity. However, as of 2021, no quantitative models have been proposed to explain the experimental observations, and the precise causes of the differences between ZBLAN fibers drawn under different gravitational situations remain unknown.

Related Research Articles

<span class="mw-page-title-main">Glass</span> Transparent non-crystalline solid material

Glass is a non-crystalline solid that is often transparent, brittle and chemically inert. It has widespread practical, technological, and decorative use in, for example, window panes, tableware, and optics.

<span class="mw-page-title-main">Single-mode optical fiber</span> Optical fiber designed to carry only a single mode of light, the transverse mode

In fiber-optic communication, a single-mode optical fiber (SMF), also known as fundamental- or mono-mode, is an optical fiber designed to carry only a single mode of light - the transverse mode. Modes are the possible solutions of the Helmholtz equation for waves, which is obtained by combining Maxwell's equations and the boundary conditions. These modes define the way the wave travels through space, i.e. how the wave is distributed in space. Waves can have the same mode but have different frequencies. This is the case in single-mode fibers, where we can have waves with different frequencies, but of the same mode, which means that they are distributed in space in the same way, and that gives us a single ray of light. Although the ray travels parallel to the length of the fiber, it is often called transverse mode since its electromagnetic oscillations occur perpendicular (transverse) to the length of the fiber. The 2009 Nobel Prize in Physics was awarded to Charles K. Kao for his theoretical work on the single-mode optical fiber. The standards G.652 and G.657 define the most widely used forms of single-mode optical fiber.

In a single-mode optical fiber, the zero-dispersion wavelength is the wavelength or wavelengths at which material dispersion and waveguide dispersion cancel one another. In all silica-based optical fibers, minimum material dispersion occurs naturally at a wavelength of approximately 1300 nm. Single-mode fibers may be made of silica-based glasses containing dopants that shift the material-dispersion wavelength, and thus, the zero-dispersion wavelength, toward the minimum-loss window at approximately 1550 nm. The engineering tradeoff is a slight increase in the minimum attenuation coefficient. Such fiber is called dispersion-shifted fiber.

<span class="mw-page-title-main">Flint glass</span>

Flint glass is optical glass that has relatively high refractive index and low Abbe number. Flint glasses are arbitrarily defined as having an Abbe number of 50 to 55 or less. The currently known flint glasses have refractive indices ranging between 1.45 and 2.00.

<span class="mw-page-title-main">Transparency and translucency</span> Property of an object or substance to transmit light with minimal scattering

In the field of optics, transparency is the physical property of allowing light to pass through the material without appreciable scattering of light. On a macroscopic scale, the photons can be said to follow Snell's law. Translucency allows light to pass through, but does not necessarily follow Snell's law; the photons can be scattered at either of the two interfaces, or internally, where there is a change in index of refraction. In other words, a translucent material is made up of components with different indices of refraction. A transparent material is made up of components with a uniform index of refraction. Transparent materials appear clear, with the overall appearance of one color, or any combination leading up to a brilliant spectrum of every color. The opposite property of translucency is opacity. Other categories of visual appearance, related to the perception of regular or diffuse reflection and transmission of light, have been organized under the concept of cesia in an order system with three variables, including transparency, translucency and opacity among the involved aspects.

<span class="mw-page-title-main">Fused quartz</span> Glass consisting of pure silica

Fused quartz,fused silica or quartz glass is a glass consisting of almost pure silica (silicon dioxide, SiO2) in amorphous (non-crystalline) form. This differs from all other commercial glasses in which other ingredients are added which change the glasses' optical and physical properties, such as lowering the melt temperature. Fused quartz, therefore, has high working and melting temperatures, making it less desirable for most common applications.

<span class="mw-page-title-main">Photonic-crystal fiber</span> Class of optical fiber based on the properties of photonic crystals

Photonic-crystal fiber (PCF) is a class of optical fiber based on the properties of photonic crystals. It was first explored in 1996 at University of Bath, UK. Because of its ability to confine light in hollow cores or with confinement characteristics not possible in conventional optical fiber, PCF is now finding applications in fiber-optic communications, fiber lasers, nonlinear devices, high-power transmission, highly sensitive gas sensors, and other areas. More specific categories of PCF include photonic-bandgap fiber, holey fiber, hole-assisted fiber, and Bragg fiber. Photonic crystal fibers may be considered a subgroup of a more general class of microstructured optical fibers, where light is guided by structural modifications, and not only by refractive index differences.

<span class="mw-page-title-main">Anti-reflective coating</span> Optical coating that reduces reflection

An antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lenses, other optical elements, and photovoltaic cells to reduce reflection. In typical imaging systems, this improves the efficiency since less light is lost due to reflection. In complex systems such as cameras, binoculars, telescopes, and microscopes the reduction in reflections also improves the contrast of the image by elimination of stray light. This is especially important in planetary astronomy. In other applications, the primary benefit is the elimination of the reflection itself, such as a coating on eyeglass lenses that makes the eyes of the wearer more visible to others, or a coating to reduce the glint from a covert viewer's binoculars or telescopic sight.

<span class="mw-page-title-main">Beryllium fluoride</span> Chemical compound

Beryllium fluoride is the inorganic compound with the formula BeF2. This white solid is the principal precursor for the manufacture of beryllium metal. Its structure resembles that of quartz, but BeF2 is highly soluble in water.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre in Commonwealth English, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, such as fiber optic sensors and fiber lasers.

<span class="mw-page-title-main">Zirconium tetrafluoride</span> Chemical compound

Zirconium(IV) fluoride describes members of a family inorganic compounds with the formula (ZrF4(H2O)x. All are colorless, diamagnetic solids. Anhydrous Zirconium(IV) fluoride' is a component of ZBLAN fluoride glass.

Fluorophosphate glass is a class of optical glasses composed of metaphosphates and fluorides of various metals. It is a variant of phosphate glasses. Fluorophosphate glasses are very unusual in nature. Fluorophosphate glasses have ultra-low theoretical loss of 0.001 dB/km, longer fluorescent lifetime of rare earths, lower coefficient of thermal expansion of ~13×10−6/°C.

<span class="mw-page-title-main">Fluoride glass</span> Class of glasses based on fluorides rather than oxides

Fluoride glass is a class of non-oxide optical glasses composed of fluorides of various metals. They can contain heavy metals such as zirconium, or be combined with lighter elements like aluminium and beryllium. These heavier elements cause the glass to have a transparency range extended into the infrared wavelength.

<span class="mw-page-title-main">FLiBe</span> Chemical compound

FLiBe is the name of a molten salt made from a mixture of lithium fluoride (LiF) and beryllium fluoride. It is both a nuclear reactor coolant and solvent for fertile or fissile material. It served both purposes in the Molten-Salt Reactor Experiment (MSRE) at the Oak Ridge National Laboratory.

Gallium lanthanum sulfide glass is the name of a family of chalcogenide glasses, referred to as gallium lanthanum sulfide (Ga-La-S) glasses. They are mixtures of La2S3, La2O3, and Ga2S3, which form the basic glass with other glass modifiers added as needed. Gallium-lanthanum-sulfide glasses have a wide range of vitreous formation centered around a 70% Ga2S3 : 30% La2S3 mixture, and readily accept other modifier materials into their structure. This means that Ga-La-S composition can be adjusted to give a wide variety of optical and physical properties.

When optical fibers are exposed to ionizing radiation such as energetic electrons, protons, neutrons, X-rays, Ƴ-radiation, etc., they undergo 'damage'. The term 'damage' primarily refers to the additional loss of the propagating optical signal leading to decreased power at the output end which could lead to premature failure of the component and or system.

<span class="mw-page-title-main">Hafnium tetrafluoride</span> Chemical compound

Hafnium tetrafluoride is the inorganic compound with the formula HfF4. It is a white solid. It adopts the same structure as zirconium tetrafluoride, with 8-coordinate Hf(IV) centers.

<span class="mw-page-title-main">Lanthanum trifluoride</span> Chemical compound

Lanthanum trifluoride is a refractory ionic compound of lanthanum and fluorine. The chemical formula is LaF
3
.

<span class="mw-page-title-main">Jacques Lucas</span>

Jacques Lucas is Professor Emeritus at the University of Rennes 1. Jacques Lucas is a solids-based chemist who specializes in the discovery of new lenses, contributing to their analysis, knowledge of their optical properties and their use in various fields. He is a member of the French Academy of sciences.

References

  1. 1 2 Harrington, James A. "Infrared Fiber Optics" (PDF). Rutgers University. Archived from the original (PDF) on 2008-05-09. Retrieved 2005-09-06.
  2. Poulain, M; Poulain, M; Lucas, J (1975). "Verres fluores au tetrafluorure de zirconium proprietes optiques d'un verre dope au Nd3+". Materials Research Bulletin. 10 (4): 243. doi:10.1016/0025-5408(75)90106-3.
  3. Cozmuta, I (2020). "Breaking the silica ceiling: ZBLAN-based opportunities for photonics applications". In Digonnet, Michel J; Jiang, Shibin (eds.). Optical Components and Materials XVII. Vol. 11276. p. 25. Bibcode:2020SPIE11276E..0RC. doi:10.1117/12.2542350. ISBN   9781510633155. S2CID   215789966.
  4. Agrawal, Govind P. (19 October 2010). Fiber-Optic Communication Systems. Wiley. ISBN   978-0470505113.
  5. Kapron, F. P.; Keck, D. B.; Maurer, R. D. (1970-11-15). "Radiation losses in glass optical waveguides". Applied Physics Letters. AIP Publishing. 17 (10): 423–425. Bibcode:1970ApPhL..17..423K. doi:10.1063/1.1653255. ISSN   0003-6951.
  6. Miya, T.; Terunuma, Y.; Hosaka, T.; Miyashita, T. (1979). "Ultimate low-loss single-mode fibre at 1.55 μm". Electronics Letters. Institution of Engineering and Technology (IET). 15 (4): 106–108. doi:10.1049/el:19790077. ISSN   0013-5194.
  7. Nagayama, K.; Saitoh, T.; Kakui, M.; Kawasaki, K.; Matsui, M.; Takamizawa, H.; Miyaki, H.; Ooga, Y.; Tsuchiya, O.; Chigusa, Y. (2002). "Ultra low loss (0.151 dB/Km) fiber and its impact on submarine transmission systems". Optical Fiber Communication Conference and Exhibit. Opt Soc. America. pp. FA10–1–FA10-3. doi:10.1109/OFC.2002.1036759. ISBN   978-1-55752-701-1. S2CID   110511419.
  8. "Le Verre Fluoré, 2020 Product Catalog". January 1, 2020. Retrieved 2020-03-24.
  9. Guery, J.; Chen, D. G.; Simmons, C. J.; Simmons, J. H.; Jcoboni, C. (1988). "Corrosion of uranium IV fluoride glasses in aqueous solutions". Phys. Chem. Glasses. 29: 30–36.
  10. K. Fujiura, K. Hoshino, T. Kanamori, Y. Nishida, Y. Ohishi, S. Sudo, Technical Digest of Optical Amplifiers and Their Applications, Davos, Switzerland. 15–17 June 1995 (Optical Society of America, Washington DC, USA, 1995)
  11. "ZBLAN continues to show promise". NASA. February 5, 1998. Retrieved 2020-06-20.
  12. Starodubov, D., Mechery, S., Miller, D., Ulmer, C., Willems, P., Ganley, J., and Tucker, D. S. (2014). ZBLAN Fibers: From Zero Gravity Tests to Orbital Manufacturing. Applied Industrial Optics: Spectroscopy, Imaging and Metrology. pp. AM4A.2. doi:10.1364/AIO.2014.AM4A.2. ISBN   978-1-55752-308-2.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  13. Tucker, D. S., SanSoucie, M. (2020). Production of ZBLAN Optical Fiber in Microgravity. Optical Fiber Sensors. pp. T2B.1. doi:10.1364/OFS.2020.T2B.1. ISBN   978-1-55752-307-5.{{cite conference}}: CS1 maint: multiple names: authors list (link)