Lanthanum-nickel alloy

Last updated
LaNi
Identifiers
Properties
LaNi
Molar mass 197.60
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Lanthanum forms several alloys with nickel, including LaNi5, La2Ni7, LaNi2, LaNi3, La2Ni3, LaNi and La3Ni etc. [1]

Contents

LaNi5

LaNi5
Names
Other names
Lanthanum pentanickel
Pentanickel lanthanum
Identifiers
Properties
LaNi5
Molar mass 432.37
Appearancegold solid [2]
Density 7.950 g/cm3 [3]
reacts with water [3]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

LaNi5 is an intermetallic compound with a CaCu5 structure. It belongs to the hexagonal crystal system. [4] It can be oxidized by air above 200 °C, and react with hydrochloric acid, sulfuric acid or nitric acid above 20 °C. [5] LaNi5 can be used as a catalyst for hydrogenation reactions. [6] [7]

Other alloys

In addition to LaNi5, there are other alloys such as La2Ni7, LaNi2, LaNi3, La2Ni3, LaNi, and La3Ni, and nonstoichiometric alloys such as LaNi2.286 (tetragonal, space group I4̄2m). [8] The nickel atoms in LaxNiy can also be replaced by other atoms, such as LaNi2.5Co2.5. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Lanthanum</span> Chemical element, symbol La and atomic number 57

Lanthanum is a chemical element with the symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table, of which lanthanum is the first and the prototype. Lanthanum is traditionally counted among the rare earth elements. Like most other rare earth elements, the usual oxidation state is +3. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity.

<span class="mw-page-title-main">Palladium</span> Chemical element, symbol Pd and atomic number 46

Palladium is a chemical element with the symbol Pd and atomic number 46. It is a rare and lustrous silvery-white metal discovered in 1803 by the English chemist William Hyde Wollaston. He named it after the asteroid Pallas, which was itself named after the epithet of the Greek goddess Athena, acquired by her when she slew Pallas. Palladium, platinum, rhodium, ruthenium, iridium and osmium form a group of elements referred to as the platinum group metals (PGMs). They have similar chemical properties, but palladium has the lowest melting point and is the least dense of them.

In chemistry, a hydride is formally the anion of hydrogen (H). The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

Nickel hydride is either an inorganic compound of the formula NiHx or any of a variety of coordination complexes.

<span class="mw-page-title-main">Cubic crystal system</span> Crystallographic system where the unit cell is in the shape of a cube

In crystallography, the cubiccrystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals.

<span class="mw-page-title-main">Thorium dioxide</span> Chemical compound

Thorium dioxide (ThO2), also called thorium(IV) oxide, is a crystalline solid, often white or yellow in colour. Also known as thoria, it is produced mainly as a by-product of lanthanide and uranium production. Thorianite is the name of the mineralogical form of thorium dioxide. It is moderately rare and crystallizes in an isometric system. The melting point of thorium oxide is 3300 °C – the highest of all known oxides. Only a few elements (including tungsten and carbon) and a few compounds (including tantalum carbide) have higher melting points. All thorium compounds, including the dioxide, are radioactive because there are no stable isotopes of thorium.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Intermetallic</span> Type of metallic alloy

An intermetallic is a type of metallic alloy that forms an ordered solid-state compound between two or more metallic elements. Intermetallics are generally hard and brittle, with good high-temperature mechanical properties. They can be classified as stoichiometric or nonstoichiometic intermetallic compounds.

<span class="mw-page-title-main">Raney nickel</span> Chemical compound

Raney nickel, also called spongy nickel, is a fine-grained solid composed mostly of nickel derived from a nickel–aluminium alloy. Several grades are known, of which most are gray solids. Some are pyrophoric, but most are used as air-stable slurries. Raney nickel is used as a reagent and as a catalyst in organic chemistry. It was developed in 1926 by American engineer Murray Raney for the hydrogenation of vegetable oils. Raney is a registered trademark of W. R. Grace and Company. Other major producers are Evonik and Johnson Matthey.

<span class="mw-page-title-main">Electrolysis of water</span> Electricity-induced chemical reaction

Electrolysis of water, also known as water splitting, is the process of using electricity to decompose water into oxygen and hydrogen gas by electrolysis. Hydrogen gas released in this way can be used as hydrogen fuel, or remixed with the oxygen to create oxyhydrogen gas, for use in welding and other applications.

<span class="mw-page-title-main">Electroless deposition</span>

Electroless deposition (ED) or electroless plating is defined as the autocatalytic process through which metals and metal alloys are deposited onto conductive and nonconductive surfaces. These nonconductive surfaces include plastics, ceramics, and glass etc., which can then become decorative, anti-corrosive, and conductive depending on their final functions. Electroplating unlike electroless deposition only deposits on other conductive or semi-conductive when a external current is applied. Electroless deposition deposits metals onto 2D and 3D structures such as screws, nanofibers, and carbon nanotubes unlike other plating methods such as Physical Vapor Deposition ( PVD), Chemical Vapor Deposition (CVD), and electroplating which are limited to 2D surfaces. Commonly the surface of the substrate is characterized via pXRD, SEM-EDS, and XPS which relay set parameters based their final funtionality. These parameters are referred to a Key Performaance Indicators crucial for a researcher’ or company's purpose. Electroless deposition continues to rise in importance within the microelectronic industry, oil and gas, and aerospace industry.

<span class="mw-page-title-main">1,1'-Bis(diphenylphosphino)ferrocene</span> Chemical compound

1,1-Bis(diphenylphosphino)ferrocene, commonly abbreviated dppf, is an organophosphorus compound commonly used as a ligand in homogeneous catalysis. It contains a ferrocene moiety in its backbone, and is related to other bridged diphosphines such as 1,2-bis(diphenylphosphino)ethane (dppe).

Electrogalvanizing is a process in which a layer of zinc is bonded to steel in order to protect against corrosion. The process involves electroplating, running a current of electricity through a saline/zinc solution with a zinc anode and steel conductor. Such Zinc electroplating or Zinc alloy electroplating maintains a dominant position among other electroplating process options, based upon electroplated tonnage per annum. According to the International Zinc Association, more than 5 million tons are used yearly for both hot dip galvanizing and electroplating. The plating of zinc was developed at the beginning of the 20th century. At that time, the electrolyte was cyanide based. A significant innovation occurred in the 1960s, with the introduction of the first acid chloride based electrolyte. The 1980s saw a return to alkaline electrolytes, only this time, without the use of cyanide. The most commonly used electrogalvanized cold rolled steel is SECC, acronym of "Steel, Electrogalvanized, Cold-rolled, Commercial quality". Compared to hot dip galvanizing, electroplated zinc offers these significant advantages:

Chromium hydrides are compounds of chromium and hydrogen, and possibly other elements. Intermetallic compounds with not-quite-stoichometric quantities of hydrogen exist, as well as highly reactive molecules. When present at low concentrations, hydrogen and certain other elements alloyed with chromium act as softening agents that enables the movement of dislocations that otherwise not occur in the crystal lattices of chromium atoms.

Alkaline water electrolysis is a type of electrolyzer that is characterized by having two electrodes operating in a liquid alkaline electrolyte solution of potassium hydroxide (KOH) or sodium hydroxide (NaOH). These electrodes are separated by a diaphragm, separating the product gases and transporting the hydroxide ions (OH) from one electrode to the other. A recent comparison showed that state-of-the-art nickel based water electrolyzers with alkaline electrolytes lead to competitive or even better efficiencies than acidic polymer electrolyte membrane water electrolysis with platinum group metal based electrocatalysts.

Nickel compounds are chemical compounds containing the element nickel which is a member of the group 10 of the periodic table. Most compounds in the group have an oxidation state of +2. Nickel is classified as a transition metal with nickel(II) having much chemical behaviour in common with iron(II) and cobalt(II). Many salts of nickel(II) are isomorphous with salts of magnesium due to the ionic radii of the cations being almost the same. Nickel forms many coordination complexes. Nickel tetracarbonyl was the first pure metal carbonyl produced, and is unusual in its volatility. Metalloproteins containing nickel are found in biological systems.

Carbohydrides are solid compounds in one phase composed of a metal with carbon and hydrogen in the form of carbide and hydride ions. The term carbohydride can also refer to a hydrocarbon.

<span class="mw-page-title-main">Electrochemical quartz crystal microbalance</span>

Electrochemical quartz crystal microbalance (EQCM) is the combination of electrochemistry and quartz crystal microbalance, which was generated in the eighties. Typically, an EQCM device contains an electrochemical cells part and a QCM part. Two electrodes on both sides of the quartz crystal serve two purposes. Firstly, an alternating electric field is generated between the two electrodes for making up the oscillator. Secondly, the electrode contacting electrolyte is used as a working electrode (WE), together with a counter electrode (CE) and a reference electrode (RE), in the potentiostatic circuit constituting the electrochemistry cell. Thus, the working electrode of electrochemistry cell is the sensor of QCM.

Gallium palladide is an intermetallic combination of gallium and palladium. In the Iron monosilicide crystal structure. The compound has been suggested as an improved catalyst for hydrogenation reactions. In principle, gallium palladide can be a more selective catalyst since unlike substituted compounds, the palladium atoms are spaced out in a regular crystal structure rather than randomly.

<span class="mw-page-title-main">Lanthanum pentanickel</span> Chemical compound

LaNi5 is a hexagonal intermetallic compound composed of rare earth element lanthanum and transition metal nickel. It presents a calcium pentacopper (CaCu5) crystal structure. It is a melting compound with the same composition and has hydrogen storage capacity.

References

  1. Picard, G. S.; Mottot, Y. E.; Tremillon, B. L. Study on electrowinning of solid lanthanum-nickel alloys in lithium chloride-potassium chloride eutectic melt. Proceedings - Electrochemical Society, 1984. 84-2. pp 585-602.
  2. 13399 MSDS. Alfa Aesar. [2017-11-18]
  3. 1 2 Sigma-Aldrich Co., Lanthanum-nickel alloy. Retrieved on 2017-11-18.
  4. Zhang, Yang-huan; Li, Peng-xin; Yang, Tai; Zhai, Ting-ting; Yuan, Ze-ming; Guo, Shi-hai (December 2014). "Effects of substituting La with M (M=Sm, Nd, Pr) on electrochemical hydrogen storage characteristics of A2B7-type electrode alloys". Transactions of Nonferrous Metals Society of China. 24 (12): 4012–4022. doi:10.1016/S1003-6326(14)63563-9.
  5. Goncharuk, A. B.; Endrzheevskaya, S. N. Stability of lanthanum nickel (LaNi5) intermetallide in liquid and gaseous media{{Country data {{{1}}} | flaglink/core | variant = | size = | name = | altlink = national rugby union team | altvar = rugby union}}. Poroshkovaya Metallurgiya (Kiev), 1980. 8: 77-79
  6. Imamura, Hayao; Kato, Yuzo; Yamada, Kazuhiro; Tsuchiya, Susumu (January 1986). "Preparation and properties of raney catalysts from rare earth intermetallic compounds". Applied Catalysis. 27 (2): 243–256. doi:10.1016/S0166-9834(00)82921-8.
  7. 吴富英, 安越, 宋林,等. 氟处理后的镧镍五对乙基咔唑的催化加氢性能[J]. 化学反应工程与工艺, 2015, 31(5):407-411.
  8. A.V. Klimyenko, J. Seuntjens, L.L. Miller, B.J. Beaudry, R.A. Jacobson, K.A. Gschneidner (November 1988). "Structure of LaNi2.286 and the La-Ni system from LaNi1.75 to LaNi2.50". Journal of the Less Common Metals. 144 (1): 133–141. doi:10.1016/0022-5088(88)90357-8. ISSN   0022-5088. Archived from the original on 2019-08-31. Retrieved 2018-11-27.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Sakai T, Miyamura H, Kuriyama N, et al. The influence of small amounts of added elements on various anode performance characteristics for LaNi2. 5Co2. 5-based alloys[J]. Journal of the Less common Metals, 1990, 159: 127-139.