Annealing (glass)

Last updated • 2 min readFrom Wikipedia, The Free Encyclopedia

Annealing is a process of slowly cooling hot glass objects after they have been formed, to relieve residual internal stresses introduced during manufacture. Especially for smaller, simpler objects, annealing may be incidental to the process of manufacture, but in larger or more complex products it commonly demands a special process of annealing in a temperature-controlled kiln known as a lehr. [1] Annealing of glass is critical to its durability. Glass that has not been properly annealed retains thermal stresses caused by quenching, which will indefinitely decrease the strength and reliability of the product. Inadequately annealed glass is likely to crack or shatter when subjected to relatively small temperature changes or to mechanical shock or stress. It even may fail spontaneously.

To anneal glass, it is necessary to heat it to its annealing temperature , at which its viscosity, η, drops to 1013 Poise (1013 dyne-second/cm2). [2] For most kinds of glass, this annealing temperature is in the range of 454–482 °C (849–900 °F)[ citation needed ], and is the so-called stress-relief point or annealing point of the glass. At such a viscosity, the glass is still too hard for significant external deformation without breaking, but it is soft enough to relax internal strains by microscopic flow in response to the intense stresses they introduce internally. The piece then heat-soaks until its temperature is even throughout and the stress relaxation is adequate. The time necessary for this step varies depending on the type of glass and its maximum thickness. The glass then is permitted to cool at a predetermined rate until its temperature passes the strain point (η = 1014.5 Poise)[ citation needed ], below which even microscopic internal flow effectively stops and annealing stops with it. It then is safe to cool the product to room temperature at a rate limited by the heat capacity, thickness, thermal conductivity, and thermal expansion coefficient of the glass. After annealing is complete the material can be cut to size, drilled, or polished without risk of its internal stresses shattering it.

At the annealing point (η = 1013 Poise), stresses relax within several minutes, while at the strain point (η = 1014.5 Poise) stresses relax within several hours. [3] Stresses acquired at temperatures above the strain point, and not relaxed by annealing, remain in the glass indefinitely and may cause either short-term or much delayed failure. Stresses resulting from cooling too rapidly below the strain point largely are considered temporary, although they may be sufficient to cause short-term failure.

See also

Related Research Articles

<span class="mw-page-title-main">Glass fiber</span> Material consisting of numerous extremely fine fibers of glass

Glass fiber is a material consisting of numerous extremely fine fibers of glass.

<span class="mw-page-title-main">Heat treating</span> Process of heating something to alter it

Heat treating is a group of industrial, thermal and metalworking processes used to alter the physical, and sometimes chemical, properties of a material. The most common application is metallurgical. Heat treatments are also used in the manufacture of many other materials, such as glass. Heat treatment involves the use of heating or chilling, normally to extreme temperatures, to achieve the desired result such as hardening or softening of a material. Heat treatment techniques include annealing, case hardening, precipitation strengthening, tempering, carburizing, normalizing and quenching. Although the term heat treatment applies only to processes where the heating and cooling are done for the specific purpose of altering properties intentionally, heating and cooling often occur incidentally during other manufacturing processes such as hot forming or welding.

<span class="mw-page-title-main">Austenite</span> Metallic, non-magnetic allotrope of iron or a solid solution of iron, with an alloying element

Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures. The austenite allotrope is named after Sir William Chandler Roberts-Austen (1843–1902). It exists at room temperature in some stainless steels due to the presence of nickel stabilizing the austenite at lower temperatures.

In materials science and continuum mechanics, viscoelasticity is the property of materials that exhibit both viscous and elastic characteristics when undergoing deformation. Viscous materials, like water, resist both shear flow and strain linearly with time when a stress is applied. Elastic materials strain when stretched and immediately return to their original state once the stress is removed.

<span class="mw-page-title-main">Lampworking</span>

Lampworking is a type of glasswork in which a torch or lamp is used to melt the glass. Once in a molten state, the glass is formed by blowing and shaping with tools and hand movements. It is also known as flameworking or torchworking, as the modern practice no longer uses oil-fueled lamps. Although lack of a precise definition for lampworking makes it difficult to determine when this technique was first developed, the earliest verifiable lampworked glass is probably a collection of beads thought to date to the fifth century BCE. Lampworking became widely practiced in Murano, Italy in the 14th century. As early as the 17th century, itinerant glassworkers demonstrated lampworking to the public. In the mid-19th century lampwork technique was extended to the production of paperweights, primarily in France, where it became a popular art form, still collected today. Lampworking differs from glassblowing in that glassblowing uses a furnace as the primary heat source, although torches are also used.

Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form, and eventually lead to structural failure.

<span class="mw-page-title-main">Residual stress</span> Stresses which remain in a solid material after the original cause is removed

In materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones. However, unintended residual stress in a designed structure may cause it to fail prematurely.

In metallurgy and materials science, annealing is a heat treatment that alters the physical and sometimes chemical properties of a material to increase its ductility and reduce its hardness, making it more workable. It involves heating a material above its recrystallization temperature, maintaining a suitable temperature for an appropriate amount of time and then cooling.

<span class="mw-page-title-main">Architectural glass</span> Building material

Architectural glass is glass that is used as a building material. It is most typically used as transparent glazing material in the building envelope, including windows in the external walls. Glass is also used for internal partitions and as an architectural feature. When used in buildings, glass is often of a safety type, which include reinforced, toughened and laminated glasses.

<span class="mw-page-title-main">Tempered glass</span> Type of safety glass processed to increase its strength

Tempered or toughened glass is a type of safety glass processed by controlled thermal or chemical treatments to increase its strength compared with normal glass. Tempering puts the outer surfaces into compression and the interior into tension. Such stresses cause the glass, when broken, to shatter into small granular chunks instead of splintering into large jagged shards as ordinary annealed glass does. These smaller, granular chunks are less likely to cause deep penetration when forced into the surface of an object compared to larger, jagged shards because the reduction in both the mass and the maximum dimension of a glass fragment corresponds with a reduction in both the momentum and the penetration depth of the glass fragment.

<span class="mw-page-title-main">Soda–lime glass</span> Type of glass

Soda–lime glass, also called soda–lime–silica glass, is the transparent glass, used for windowpanes and glass containers for beverages, food, and some commodity items. It is the most prevelant type of glass made. Some glass bakeware is made of soda-lime glass, as opposed to the more common borosilicate glass. Soda–lime glass accounts for about 90% of manufactured glass.

Thermomechanical analysis (TMA) is a technique used in thermal analysis, a branch of materials science which studies the properties of materials as they change with temperature.

<span class="mw-page-title-main">Geodynamics</span> Study of dynamics of the Earth

Geodynamics is a subfield of geophysics dealing with dynamics of the Earth. It applies physics, chemistry and mathematics to the understanding of how mantle convection leads to plate tectonics and geologic phenomena such as seafloor spreading, mountain building, volcanoes, earthquakes, faulting. It also attempts to probe the internal activity by measuring magnetic fields, gravity, and seismic waves, as well as the mineralogy of rocks and their isotopic composition. Methods of geodynamics are also applied to exploration of other planets.

<span class="mw-page-title-main">Lehr (glassmaking)</span> Kiln used for annealing of glass

In the manufacture of float glass, a lehr oven is a long kiln with an end-to-end temperature gradient, which is used for annealing newly made glass objects that are transported through the temperature gradient either on rollers or on a conveyor belt. The annealing renders glass into a stronger material with fewer internal stresses, and with a lower probability of breaking.

Glass production involves two main methods – the float glass process that produces sheet glass, and glassblowing that produces bottles and other containers. It has been done in a variety of ways during the history of glass.

<span class="mw-page-title-main">Viscosity</span> Resistance of a fluid to shear deformation

Viscosity is a measure of a fluid's dynamic resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. Viscosity is defined scientifically as a force multiplied by a time divided by an area. Thus its SI units are newton-seconds per square meter, or pascal-seconds.

<span class="mw-page-title-main">Precision glass moulding</span> Production of optical glass without grinding and polishing

Precision glass moulding is a replicative process that allows the production of high precision optical components from glass without grinding and polishing. The process is also known as ultra-precision glass pressing. It is used to manufacture precision glass lenses for consumer products such as digital cameras, and high-end products like medical systems. The main advantage over mechanical lens production is that complex lens geometries such as aspheres can be produced cost-efficiently.

<span class="mw-page-title-main">Glass transition</span> Reversible transition in amorphous materials

The glass–liquid transition, or glass transition, is the gradual and reversible transition in amorphous materials from a hard and relatively brittle "glassy" state into a viscous or rubbery state as the temperature is increased. An amorphous solid that exhibits a glass transition is called a glass. The reverse transition, achieved by supercooling a viscous liquid into the glass state, is called vitrification.

<span class="mw-page-title-main">Insulated glazing</span> Construction element consisting of at least two glass plates

Insulating glass (IG) consists of two or more glass window panes separated by a space to reduce heat transfer across a part of the building envelope. A window with insulating glass is commonly known as double glazing or a double-paned window, triple glazing or a triple-paned window, or quadruple glazing or a quadruple-paned window, depending upon how many panes of glass are used in its construction.

References

  1. E. F. Collins (1921) Electrically heated glass annealing lehr. Journal of the American Ceramic Society 4 (5), pp. 335–349
  2. "All About Glass". www.cmog.org. Corning Museum of Glass. 9 December 2011.
  3. Werner Vogel: "Glass Chemistry"; Springer-Verlag Berlin and Heidelberg GmbH & Co. K; 2nd revised edition (November 1994), ISBN   3-540-57572-3