Soda–lime glass

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia
Reusable soda-lime glass milk bottles Glass milk bottles.jpg
Reusable soda–lime glass milk bottles
Old window made from soda-lime flat glass, Jena, Germany: The distorted reflections of a tree indicate that the flat glass was possibly not made by the float glass process. Soda-lime window, not by float glass process.jpg
Old window made from soda-lime flat glass, Jena, Germany: The distorted reflections of a tree indicate that the flat glass was possibly not made by the float glass process.

Soda–lime glass, also called soda–lime–silica glass, is the transparent glass, used for windowpanes and glass containers (bottles and jars) for beverages, food, and some commodity items. It is the most prevelant type of glass made. Some glass bakeware is made of soda-lime glass, as opposed to the more common borosilicate glass. [1] Soda–lime glass accounts for about 90% of manufactured glass. [2] [3]

Contents

Production

The manufacturing process for soda–lime glass consists in melting the raw materials, which are the silica, soda (Na2O), hydrated lime (Ca(OH)2), dolomite (CaMg(CO3)2, which provides the magnesium oxide), and aluminium oxide; along with small quantities of fining agents (e.g., sodium sulfate (Na2SO4), sodium chloride (NaCl), etc.) in a glass furnace at temperatures locally up to 1675 °C. [4] The soda and the lime serve as a flux lowering the melting temperature of silica (1580 °C) as well as causing the mixture to soften as it heats, starting at as low as 700 °C. The temperature is only limited by the quality of the furnace structure material and by the glass composition. Relatively inexpensive minerals such as trona, sand, and feldspar are usually used instead of pure chemicals. Green and brown bottles are obtained from raw materials containing iron oxide. The mix of raw materials is termed batch.

Applications

Soda–lime glass is divided technically into glass used for windows, called flat glass, and glass for containers, called container glass. The two types differ in the application, production method (float process for windows, blowing and pressing for containers), and chemical composition. Flat glass has a higher magnesium oxide and sodium oxide content than container glass, and a lower silica, calcium oxide, and aluminium oxide content. [5] From the lower content of highly water-soluble ions (sodium and magnesium) in container glass comes its slightly higher chemical durability against water, which is required especially for storage of beverages and food.

Typical compositions and properties

Soda–lime glass is relatively inexpensive, chemically stable, reasonably hard, and extremely workable. Because it can be resoftened and remelted numerous times, it is ideal for glass recycling. [6] [7] It is used in preference to chemically-pure silica (SiO2), otherwise known as fused quartz. Whereas pure silica has excellent resistance to thermal shock, being able to survive immersion in water while red hot, its high melting temperature (1723  °C) and viscosity make it difficult to work with. [8] Other substances are therefore added to simplify processing. One is the "soda", or sodium oxide (Na2O), which is added in the form of sodium carbonate or related precursors. Soda lowers the glass-transition temperature. However, the soda makes the glass water-soluble, which is usually undesirable. To provide for better chemical durability, the "lime" is also added. This is calcium oxide (CaO), generally obtained from limestone. In addition, magnesium oxide (MgO) and alumina, which is aluminium oxide (Al2O3), contribute to the durability. The resulting glass contains about 70 to 74% silica by weight.

Soda–lime glass undergoes a steady increase in viscosity with decreasing temperature, permitting operations of steadily increasing precision. The glass is readily formable into objects when it has a viscosity of 104 poises, typically reached at a temperature around 900 °C. The glass is softened and undergoes steady deformation when viscosity is less than 108 poises, near 700 °C. Though apparently hardened, soda–lime glass can nonetheless be annealed to remove internal stresses with about 15 minutes at 1014 poises, near 500 °C. The relationship between viscosity and temperature is largely logarithmic, with an Arrhenius equation strongly dependent on the composition of the glass, but the activation energy increases at higher temperatures. [9]

The following table lists some physical properties of soda–lime glasses. Unless otherwise stated, the glass compositions and many experimentally determined properties are taken from one large study. [5] Those values marked in italic font have been interpolated from similar glass compositions (see calculation of glass properties) due to the lack of experimental data.

Properties Container glass Flat glass
Chemical
composition,
wt%
74 SiO2 0.3 K2O
13 Na2O 0.2 MgO
10.5 CaO 0.04 Fe2O3
1.3 Al2O3 0.01 TiO2
0.2 SO3
73SiO20.03K2O
14Na2O4MgO
9CaO0.1Fe2O3
0.15Al2O30.02TiO2
 
Viscosity
log(η, dPa·s or poise)
= A + B / (T in °C − T0)
550 °C (1,022 °F)1,450 °C (2,640 °F)
A
B3922
T0291
550 °C (1,022 °F)1,450 °C (2,640 °F)
A−2.585
B4215
T0263
Glass transition
temperature, Tg
573 °C (1,063 °F)564 °C (1,047 °F)
Coefficient of
thermal expansion,
ppm/K, ~100–300 °C (212–572 °F)
99.5
Density
at 20 °C (68 °F), g/cm3
2.522.53
Refractive index
nD at 20 °C (68 °F)
1.5181.520
Dispersion at 20 °C (68 °F),
104 × (nFnC)
86.787.7
Young's modulus
at 20 °C (68 °F), GPa
7274
Shear modulus
at 20 °C (68 °F), GPa
29.829.8
Liquidus
temperature
1,040 °C (1,900 °F)1,000 °C (1,830 °F)
Heat
capacity at 20 °C (68 °F),
J/(mol·K)
4948
Surface tension,
at ~1,300 °C (2,370 °F), mJ/m2
315
Chemical durability,
Hydrolytic class,
after ISO 719 [10]
33...4
Critical stress
intensity factor, [11]
(KIC), MPa.m0.5
?0.75

See also

Related Research Articles

<span class="mw-page-title-main">Glass</span> Transparent non-crystalline solid material

Glass is an amorphous (non-crystalline) solid. Because it is often transparent and chemically inert, glass has found widespread practical, technological, and decorative use in window panes, tableware, and optics. Some common objects made of glass are named after the material, e.g. "glass", "glasses", "magnifying glass".

<span class="mw-page-title-main">Aluminium oxide</span> Chemical compound with formula Al2O3

Aluminium oxide (or aluminium(III) oxide) is a chemical compound of aluminium and oxygen with the chemical formula Al2O3. It is the most commonly occurring of several aluminium oxides, and specifically identified as aluminium oxide. It is commonly called alumina and may also be called aloxide, aloxite, or alundum in various forms and applications. It occurs naturally in its crystalline polymorphic phase α-Al2O3 as the mineral corundum, varieties of which form the precious gemstones ruby and sapphire. Al2O3 is used to produce aluminium metal, as an abrasive owing to its hardness, and as a refractory material owing to its high melting point.

<span class="mw-page-title-main">Sodium carbonate</span> Chemical compound

Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the chloralkali process.

<span class="mw-page-title-main">Glass fiber</span> Material consisting of numerous extremely fine fibers of glass

Glass fiber is a material consisting of numerous extremely fine fibers of glass.

Sodium silicate is a generic name for chemical compounds with the formula Na
2x
Si
y
O
2y+x
or (Na
2
O)
x
·(SiO
2
)
y
, such as sodium metasilicate, sodium orthosilicate, and sodium pyrosilicate. The anions are often polymeric. These compounds are generally colorless transparent solids or white powders, and soluble in water in various amounts.

The Bayer process is the principal industrial means of refining bauxite to produce alumina (aluminium oxide) and was developed by Carl Josef Bayer. Bauxite, the most important ore of aluminium, contains only 30–60% aluminium oxide (Al2O3), the rest being a mixture of silica, various iron oxides, and titanium dioxide. The aluminium oxide must be further purified before it can be refined into aluminium.

<span class="mw-page-title-main">Fernico</span>

Fernico describes a family of metal alloys made primarily of iron, nickel and cobalt. The family includes Kovar, FerNiCo I, FerNiCo II, and Dumet. The name is made up of the chemical symbols of its constituent three elements. "Dumet" is a portmanteau of "dual" and "metal," because it is a heterogeneous alloy, usually fabricated in the form of a wire with an alloy core and a copper cladding. These alloys possess the properties of electrical conductivity, minimal oxidation and formation of porous surfaces at working temperatures of glass and thermal coefficients of expansion which match glass closely. These requirements allow the alloys to be used in glass seals, such that the seal does not crack, fracture or leak with changes in temperature.

<span class="mw-page-title-main">Refractory</span> Materials resistant to decomposition under high temperatures

In materials science, a refractory is a material that is resistant to decomposition by heat or chemical attack and that retains its strength and rigidity at high temperatures. They are inorganic, non-metallic compounds that may be porous or non-porous, and their crystallinity varies widely: they may be crystalline, polycrystalline, amorphous, or composite. They are typically composed of oxides, carbides or nitrides of the following elements: silicon, aluminium, magnesium, calcium, boron, chromium and zirconium. Many refractories are ceramics, but some such as graphite are not, and some ceramics such as clay pottery are not considered refractory. Refractories are distinguished from the refractory metals, which are elemental metals and their alloys that have high melting temperatures.

<span class="mw-page-title-main">Borosilicate glass</span> Glass made of silica and boron trioxide

Borosilicate glass is a type of glass with silica and boron trioxide as the main glass-forming constituents. Borosilicate glasses are known for having very low coefficients of thermal expansion, making them more resistant to thermal shock than any other common glass. Such glass is subjected to less thermal stress and can withstand temperature differentials without fracturing of about 165 °C (300 °F). It is commonly used for the construction of reagent bottles and flasks, as well as lighting, electronics, and cookware. For many other applications, soda-lime glass is more common.

Sodium oxide is a chemical compound with the formula Na2O. It is used in ceramics and glasses. It is a white solid but the compound is rarely encountered. Instead "sodium oxide" is used to describe components of various materials such as glasses and fertilizers which contain oxides that include sodium and other elements. Sodium oxide is a component.

<span class="mw-page-title-main">Bioglass 45S5</span> Bioactive glass biomaterial

Bioglass 45S5 or calcium sodium phosphosilicate, is a bioactive glass specifically composed of 45 wt% SiO2, 24.5 wt% CaO, 24.5 wt% Na2O, and 6.0 wt% P2O5. Typical applications of Bioglass 45S5 include: bone grafting biomaterials, repair of periodontal defects, cranial and maxillofacial repair, wound care, blood loss control, stimulation of vascular regeneration, and nerve repair.

In chemistry, an aluminate is a compound containing an oxyanion of aluminium, such as sodium aluminate. In the naming of inorganic compounds, it is a suffix that indicates a polyatomic anion with a central aluminium atom.

Dealkalization is a process of surface modification applicable to glasses containing alkali ions, wherein a thin surface layer is created that has a lower concentration of alkali ions than is present in the underlying, bulk glass. This change in surface composition commonly alters the observed properties of the surface, most notably enhancing corrosion resistance.

Glass production involves two main methods – the float glass process that produces sheet glass, and glassblowing that produces bottles and other containers. It has been done in a variety of ways during the history of glass.

Fluxes are substances, usually oxides, used in glasses, glazes and ceramic bodies to lower the high melting point of the main glass forming constituents, usually silica and alumina. A ceramic flux functions by promoting partial or complete liquefaction. The most commonly used fluxing oxides in a ceramic glaze contain lead, sodium, potassium, lithium, calcium, magnesium, barium, zinc, strontium, and manganese. These are introduced to the raw glaze as compounds, for example lead as lead oxide. Boron is considered by many to be a glass former rather than a flux.

<span class="mw-page-title-main">Plate glass</span> Glass made of flat sheets

Plate glass, flat glass or sheet glass is a type of glass, initially produced in plane form, commonly used for windows, glass doors, transparent walls, and windscreens. For modern architectural and automotive applications, the flat glass is sometimes bent after production of the plane sheet. Flat glass stands in contrast to container glass and glass fibre.

<span class="mw-page-title-main">Container glass</span> Type of glass used for glass containers

Container glass is a type of glass for the production of glass containers, such as bottles, jars, drinkware, and bowls. Container glass stands in contrast to flat glass and glass fiber.

Macor is the trademark for a machinable glass-ceramic developed and sold by Corning Inc. It is a white material that looks somewhat like porcelain. Macor is a good thermal insulator and is stable up to temperatures of 1000 °C, with very little thermal expansion or outgassing. It can be machined using standard metalworking tools.

Optical glass refers to a quality of glass suitable for the manufacture of optical systems such as optical lenses, prisms or mirrors. Unlike window glass or crystal, whose formula is adapted to the desired aesthetic effect, optical glass contains additives designed to modify certain optical or mechanical properties of the glass: refractive index, dispersion, transmittance, thermal expansion and other parameters. Lenses produced for optical applications use a wide variety of materials, from silica and conventional borosilicates to elements such as germanium and fluorite, some of which are essential for glass transparency in areas other than the visible spectrum.

References

  1. Estes, Adam Clark (March 16, 2019). "The Pyrex Glass Controversy That Just Won't Die". Gizmodo. Retrieved 2019-03-22.
  2. "Borosilicate Glass vs. Soda Lime Glass? - Rayotek News". rayotek.com. Archived from the original on 23 April 2017. Retrieved 23 April 2017.
  3. Robertson, Gordon L. (22 September 2005). Food Packaging: Principles and Practice (Second ed.). CRC Press. ISBN   978-0-8493-3775-8. Archived from the original on 2 December 2017.
  4. B. H. W. S. de Jong, "Glass"; in "Ullmann's Encyclopedia of Industrial Chemistry"; 5th edition, vol. A12, VCH Publishers, Weinheim, Germany, 1989, ISBN   978-3-527-20112-9, pp. 365–432.
  5. 1 2 "High temperature glass melt property database for process modeling"; Eds.: Thomas P. Seward III and Terese Vascott; The American Ceramic Society, Westerville, Ohio, 2005, ISBN   1-57498-225-7
  6. "Calcium Carbonate - Glass Manufacturing". congcal.com. congcal. 28 June 2012. Retrieved 5 August 2013.
  7. Gerace, Katy S.; Mauro, John C. (2024). "Characterization of soda–lime silicate glass bottles to support recycling efforts". International Journal of Ceramic Engineering & Science. 6 (3): e10217. doi: 10.1002/ces2.10217 .
  8. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  9. Thomas H. Sanders Jr. "Viscosity Behavior of Oxide Glasses". Coursera.
  10. "ISO 719:1985 - Glass -- Hydrolytic resistance of glass grains at 98 degrees C -- Method of test and classification". iso.org.
  11. Wiederhorn, S.M. (1969). "Fracture stress energy of glass". Journal of the American Ceramic Society. 52 (2): 99–105. doi:10.1111/j.1151-2916.1969.tb13350.x.
  12. Gondret, P.; M. Lance; L. Petit (2002). "Bouncing Motion of Spherical Particles in Fluids". Physics of Fluids. 14 (2): 643–652. doi:10.1063/1.1427920.
  13. Janssen, L. P. B. M., Warmoeskerken, M. M. C. G., 2006. Transport phenomena data companion. Delft: VVSD.
  14. "Soda-Lime (Float) Glass Material Properties :: MakeItFrom.com". makeitfrom.com.