Gradient-index optics

Last updated
A gradient-index lens with a parabolic variation of refractive index (n) with radial distance (x). The lens focuses light in the same way as a conventional lens. Grin-lens.png
A gradient-index lens with a parabolic variation of refractive index (n) with radial distance (x). The lens focuses light in the same way as a conventional lens.

Gradient-index (GRIN) optics is the branch of optics covering optical effects produced by a gradient of the refractive index of a material. Such gradual variation can be used to produce lenses with flat surfaces, or lenses that do not have the aberrations typical of traditional spherical lenses. Gradient-index lenses may have a refraction gradient that is spherical, axial, or radial.

Contents

In nature

The lens of the eye is the most obvious example of gradient-index optics in nature. In the human eye, the refractive index of the lens varies from approximately 1.406 in the central layers down to 1.386 in less dense layers of the lens. [1] This allows the eye to image with good resolution and low aberration at both short and long distances. [2]

Another example of gradient index optics in nature is the common mirage of a pool of water appearing on a road on a hot day. The pool is actually an image of the sky, apparently located on the road since light rays are being refracted (bent) from their normal straight path. This is due to the variation of refractive index between the hot, less dense air at the surface of the road, and the denser cool air above it. The variation in temperature (and thus density) of the air causes a gradient in its refractive index, causing it to increase with height. [3] This index gradient causes refraction of light rays (at a shallow angle to the road) from the sky, bending them into the eye of the viewer, with their apparent location being the road's surface.

The Earth's atmosphere acts as a GRIN lens, allowing observers to see the sun for a few minutes after it is actually below the horizon, and observers can also view stars that are below the horizon. [3] This effect also allows for observation of electromagnetic signals from satellites after they have descended below the horizon, as in radio occultation measurements.

Applications

The ability of GRIN lenses to have flat surfaces simplifies the mounting of the lens, which makes them useful where many very small lenses need to be mounted together, such as in photocopiers and scanners. [4] The flat surface also allows a GRIN lens to be easily optically aligned to a fiber, to produce collimated output, making it applicable for endoscopy as well as for in vivo calcium imaging and optogenetic stimulation in brain. [5]

In imaging applications, GRIN lenses are mainly used to reduce aberrations. The design of such lenses involves detailed calculations of aberrations as well as efficient manufacture of the lenses. A number of different materials have been used for GRIN lenses including optical glasses, plastics, germanium, zinc selenide, and sodium chloride. [4]

Certain optical fibres (graded-index fibres) are made with a radially-varying refractive index profile; this design strongly reduces the modal dispersion of a multi-mode optical fiber. The radial variation in refractive index allows for a sinusoidal height distribution of rays within the fibre, preventing the rays from leaving the core. This differs from traditional optical fibres, which rely on total internal reflection, in that all modes of the GRIN fibres propagate at the same speed, allowing for a higher temporal bandwidth for the fibre. [6]

Antireflection coatings are typically effective for narrow ranges of frequency or angle of incidence. Graded-index materials are less constrained. [7]

An axial gradient lens has been used to concentrate sunlight onto solar cells, capturing as much as 90% of incident light when the sun is not at an optimal angle. [8]

Manufacture

GRIN lenses are made by several techniques:

History

In 1854, J C Maxwell suggested a lens whose refractive index distribution would allow for every region of space to be sharply imaged. Known as the Maxwell fisheye lens, it involves a spherical index function and would be expected to be spherical in shape as well. [15] This lens, however, is impractical to make and has little usefulness since only points on the surface and within the lens are sharply imaged and extended objects suffer from extreme aberrations. In 1905, R. W. Wood used a dipping technique creating a gelatin cylinder with a refractive index gradient that varied symmetrically with the radial distance from the axis. Disk-shaped slices of the cylinder were later shown to have plane faces with radial index distribution. He showed that even though the faces of the lens were flat, they acted like converging and diverging lens depending on whether the index was a decreasing or increasing relative to the radial distance. [16] In 1964, a posthumous book of R. K. Luneburg was published in which he described a lens that focuses incident parallel rays of light onto a point on the opposite surface of the lens. [17] This also limited the applications of the lens because it was difficult to use it to focus visible light; however, it had some usefulness in microwave applications. Some years later several new techniques have been developed to fabricate lenses of the Wood type. Since then at least the thinner GRIN lenses can possess surprisingly good imaging properties considering their very simple mechanical construction, while thicker GRIN lenses found application e.g. in Selfoc rods. [18]

Theory

An inhomogeneous gradient-index lens possesses a refractive index whose change follows the function of the coordinates of the region of interest in the medium. According to Fermat's principle, the light path integral (L), taken along a ray of light joining any two points of a medium, is stationary relative to its value for any nearby curve joining the two points. The light path integral is given by the equation

, where n is the refractive index and S is the arc length of the curve. If Cartesian coordinates are used, this equation is modified to incorporate the change in arc length for a spherical gradient, to each physical dimension:

where prime corresponds to d/ds. [19] The light path integral is able to characterize the path of light through the lens in a qualitative manner, such that the lens may be easily reproduced in the future.

The refractive index gradient of GRIN lenses can be mathematically modelled according to the method of production used. For example, GRIN lenses made from a radial gradient index material, such as SELFOC Microlens, [20] have a refractive index that varies according to:

, where nr is the refractive index at a distance, r, from the optical axis; no is the design index on the optical axis, and A is a positive constant.

See also

Related Research Articles

<span class="mw-page-title-main">Optical aberration</span> Deviation from perfect paraxial optical behavior

In optics, aberration is a property of optical systems, such as lenses, that causes light to be spread out over some region of space rather than focused to a point. Aberrations cause the image formed by a lens to be blurred or distorted, with the nature of the distortion depending on the type of aberration. Aberration can be defined as a departure of the performance of an optical system from the predictions of paraxial optics. In an imaging system, it occurs when light from one point of an object does not converge into a single point after transmission through the system. Aberrations occur because the simple paraxial theory is not a completely accurate model of the effect of an optical system on light, rather than due to flaws in the optical elements.

<span class="mw-page-title-main">Lens</span> Optical device which transmits and refracts light

A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (elements), usually arranged along a common axis. Lenses are made from materials such as glass or plastic and are ground, polished, or molded to the required shape. A lens can focus light to form an image, unlike a prism, which refracts light without focusing. Devices that similarly focus or disperse waves and radiation other than visible light are also called "lenses", such as microwave lenses, electron lenses, acoustic lenses, or explosive lenses.

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Refractive index</span> Ratio of the speed of light in vacuum to that in the medium

In optics, the refractive index of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium.

<span class="mw-page-title-main">Numerical aperture</span> Characteristic of an optical system

In optics, the numerical aperture (NA) of an optical system is a dimensionless number that characterizes the range of angles over which the system can accept or emit light. By incorporating index of refraction in its definition, NA has the property that it is constant for a beam as it goes from one material to another, provided there is no refractive power at the interface. The exact definition of the term varies slightly between different areas of optics. Numerical aperture is commonly used in microscopy to describe the acceptance cone of an objective, and in fiber optics, in which it describes the range of angles within which light that is incident on the fiber will be transmitted along it.

<span class="mw-page-title-main">Spherical aberration</span> Optical aberration

In optics, spherical aberration (SA) is a type of aberration found in optical systems that have elements with spherical surfaces. Lenses and curved mirrors are prime examples, because this shape is easier to manufacture. Light rays that strike a spherical surface off-centre are refracted or reflected more or less than those that strike close to the centre. This deviation reduces the quality of images produced by optical systems. The effect of spherical aberration was first identified by Ibn al-Haytham who discussed it in his work Kitāb al-Manāẓir.

Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Astigmatism (optical systems)</span> Optical aberration

An optical system with astigmatism is one where rays that propagate in two perpendicular planes have different foci. If an optical system with astigmatism is used to form an image of a cross, the vertical and horizontal lines will be in sharp focus at two different distances. The term comes from the Greek α- (a-) meaning "without" and στίγμα (stigma), "a mark, spot, puncture".

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

<span class="mw-page-title-main">Luneburg lens</span> Spherically symmetric gradient-index lens

A Luneburg lens is a spherically symmetric gradient-index lens. A typical Luneburg lens's refractive index n decreases radially from the center to the outer surface. They can be made for use with electromagnetic radiation from visible light to radio waves.

<span class="mw-page-title-main">Wavefront</span> Locus of points at equal phase in a wave

In physics, the wavefront of a time-varying wave field is the set (locus) of all points having the same phase. The term is generally meaningful only for fields that, at each point, vary sinusoidally in time with a single temporal frequency.

<span class="mw-page-title-main">Anti-reflective coating</span> Optical coating that reduces reflection

An antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lenses, other optical elements, and photovoltaic cells to reduce reflection. In typical imaging systems, this improves the efficiency since less light is lost due to reflection. In complex systems such as cameras, binoculars, telescopes, and microscopes the reduction in reflections also improves the contrast of the image by elimination of stray light. This is especially important in planetary astronomy. In other applications, the primary benefit is the elimination of the reflection itself, such as a coating on eyeglass lenses that makes the eyes of the wearer more visible to others, or a coating to reduce the glint from a covert viewer's binoculars or telescopic sight.

<span class="mw-page-title-main">Aspheric lens</span> Type of lens

An aspheric lens or asphere is a lens whose surface profiles are not portions of a sphere or cylinder. In photography, a lens assembly that includes an aspheric element is often called an aspherical lens.

<span class="mw-page-title-main">Optical fiber</span> Light-conducting fiber

An optical fiber, or optical fibre in Commonwealth English, is a flexible glass or plastic fiber that can transmit light from one end to the other. Such fibers find wide usage in fiber-optic communications, where they permit transmission over longer distances and at higher bandwidths than electrical cables. Fibers are used instead of metal wires because signals travel along them with less loss; in addition, fibers are immune to electromagnetic interference, a problem from which metal wires suffer. Fibers are also used for illumination and imaging, and are often wrapped in bundles so they may be used to carry light into, or images out of confined spaces, as in the case of a fiberscope. Specially designed fibers are also used for a variety of other applications, such as fiber optic sensors and fiber lasers.

<span class="mw-page-title-main">Microlens</span> Small lens, generally with a diameter less than a millimetre

A microlens is a small lens, generally with a diameter less than a millimetre (mm) and often as small as 10 micrometres (µm). The small sizes of the lenses means that a simple design can give good optical quality but sometimes unwanted effects arise due to optical diffraction at the small features. A typical microlens may be a single element with one plane surface and one spherical convex surface to refract the light. Because micro-lenses are so small, the substrate that supports them is usually thicker than the lens and this has to be taken into account in the design. More sophisticated lenses may use aspherical surfaces and others may use several layers of optical material to achieve their design performance.

In physics, ray tracing is a method for calculating the path of waves or particles through a system with regions of varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these circumstances, wavefronts may bend, change direction, or reflect off surfaces, complicating analysis. Ray tracing solves the problem by repeatedly advancing idealized narrow beams called rays through the medium by discrete amounts. Simple problems can be analyzed by propagating a few rays using simple mathematics. More detailed analysis can be performed by using a computer to propagate many rays.

<span class="mw-page-title-main">Transformation optics</span> Branch of optics which studies how EM radiation can be manipulated with metamaterials

Transformation optics is a branch of optics which applies metamaterials to produce spatial variations, derived from coordinate transformations, which can direct chosen bandwidths of electromagnetic radiation. This can allow for the construction of new composite artificial devices, which probably could not exist without metamaterials and coordinate transformation. Computing power that became available in the late 1990s enables prescribed quantitative values for the permittivity and permeability, the constitutive parameters, which produce localized spatial variations. The aggregate value of all the constitutive parameters produces an effective value, which yields the intended or desired results.

A flat lens is a lens whose flat shape allows it to provide distortion-free imaging, potentially with arbitrarily-large apertures. The term is also used to refer to other lenses that provide a negative index of refraction. Flat lenses require a refractive index close to −1 over a broad angular range. In recent years, flat lenses based on metasurfaces were also demonstrated.

The eye, like any other optical system, suffers from a number of specific optical aberrations. The optical quality of the eye is limited by optical aberrations, diffraction and scatter. Correction of spherocylindrical refractive errors has been possible for nearly two centuries following Airy's development of methods to measure and correct ocular astigmatism. It has only recently become possible to measure the aberrations of the eye and with the advent of refractive surgery it might be possible to correct certain types of irregular astigmatism.

<span class="mw-page-title-main">Ball lens</span> Spherical lens

A ball lens is an optical lens in the shape of a sphere. Formally, it is a bi-convex spherical lens with the same radius of curvature on both sides, and diameter equal to twice the radius of curvature. The same optical laws may be applied to analyze its imaging characteristics as for other lenses.

References

  1. Hecht, Eugene; Zając, Alfred (1987). Optics (2nd ed.). Reading, Mass.: Addison-Wesley. p. 178. ISBN   978-0201116090. OCLC   13761389.
  2. Shirk J S, Sandrock M, Scribner D, Fleet E, Stroman R, Baer E, Hiltner A. (2006) NRL Review pp 53–61
  3. 1 2 Tsiboulia, A B (2003). "Gradient Index (GRIN) Lenses". In Ronald G. Driggers. Encyclopedia of Optical Engineering, Volume 1. New York, NY: Marcel Dekker. 675-683. ISBN   9780824742508.
  4. 1 2 "Gradient Index Lenses Selection Guide: Types, Features, Applications". Engineering360. Retrieved 2021-07-11.
  5. "In Vivo Calcium Imaging: The Ultimate Guide". Mightex. 2019. Retrieved 2021-07-11.
  6. 1 2 3 4 5 6 Moore, Duncan T. (1980). "Gradient-index optics: a review". Applied Optics. 19 (7): 1035–1038. doi:10.1364/AO.19.001035.
  7. Zhang, Jun-Chao; Xiong, Li-Min; Fang, Ming; He, Hong-Bo (2013). "Wide-angle and broadband graded-refractive-index antireflection coatings" (PDF). Chinese Physics B. 22 (4): 044201. Bibcode:2013ChPhB..22d4201Z. doi:10.1088/1674-1056/22/4/044201 . Retrieved 13 May 2016.
  8. Irving, Michael (2022-06-28). "Pyramid lenses catch light from any angle to boost solar cell efficiency". New Atlas. Retrieved 2022-06-28.
  9. Sinai P, (1970). Applied Optics. 10, 99-104
  10. Keck D B and Olshansky R, "Optical Waveguide Having Optimal Index Gradient," U.S. Patent 3,904,268 (9 Sept. 1975).
  11. Moore R S, "Plastic Optical Element Having Refractive Index Gradient," U.S. Patent 3,718,383 (Feb. 1973).
  12. Hensler J R, "Method of Producing a Refractive Index Gradient in Glass," U.S. Patent 3,873,408 (25 Mar. 1975).
  13. Mohr, R K; Wilder, J A; Macedo, P B; Gupta, P K (1979). "Graded index lenses by the molecular stuffing process". A digest of technical papers presented at the Topical Meeting on Gradient Index Optical Imaging Systems, May 15-16, 1979, Rochester, New York. paper WA1. Washington, D C: Optical Society of America. OCLC   489755284.
  14. Zukauskas, Albertas; Matulaitiene, Ieva; Paipulas, Domas; Niaura, Gedinimas; Malinauskas, Mangirdas; Gadonas, Roaldas (2015). "Tuning the refractive index in 3D direct laser writing lithography: towards GRIN microoptics". Laser & Photonics Reviews. 9 (6): 706–712. Bibcode:2015LPRv....9..706Z. doi:10.1002/lpor.201500170.
  15. Maxwell, James Clerk (1854). "Solutions of problems: (prob. 3, vol. VIII. p. 188)". The Cambridge and Dublin Mathematical Journal. 9: 9–11. (reprinted by: Nivin, William Davidson, ed. (1890). The scientific papers of James Clerk Maxwell. New York: Dover Publications. pp. 76–79.)
  16. Wood, Robert Williams (1905). Physical Optics. New York; London: Macmillan. p. 71.
  17. Luneburg, Rudolf Karl (1964). Mathematical Theory of Optics. Berkeley: University of California Press. ISBN   978-0-5203-2826-6. OCLC   1149437946.
  18. Marchand, E.W. (1976). "Third-order aberrations of the photographic Wood". Journal of the Optical Society of America. 66 (12): 1326–1330. doi:10.1364/JOSA.66.001326.
  19. Marchand, Erich W. (1978). Gradient index optics. New York: Academic Press. ISBN   978-0124707504. OCLC   4497777.
  20. Flores-Arias, M.T.; Bao, C.; Castelo, A.; Perez, M.V.; Gomez-Reino, C. (2006-10-15). "Crossover interconnects in gradient-index planar optics". Optics Communications. 266 (2): 490–494. Bibcode:2006OptCo.266..490F. doi:10.1016/j.optcom.2006.05.049. ISSN   0030-4018.