Oxidizing and reducing flames

Last updated
Reducing, neutral and oxidizing oxyacetylene flames. Types of oxyacetylene flames.png
Reducing, neutral and oxidizing oxyacetylene flames.

A flame is affected by the fuel introduced and the oxygen available. A flame with a balanced oxygen-fuel ratio is called a neutral flame. The color of a neutral flame is semi-transparent purple or blue. [1] This flame is optimal for many uses because it does not oxidize or deposit soot onto surfaces.

Contents

Bunsen burner flames with different oxygen levels: 1. diffusion flame, 2. reducing flame, 3. fuel-rich neutral flame, 4. neutral flame Bunsen burner flame types.jpg
Bunsen burner flames with different oxygen levels: 1. diffusion flame, 2. reducing flame, 3. fuel-rich neutral flame, 4. neutral flame
Oxygen rich butane torch flame OxygenRichBlowTorchFlame.jpg
Oxygen rich butane torch flame
Fuel rich butane torch flame FuelRichBlowTorchFlame.jpg
Fuel rich butane torch flame

Oxidizing flame

If the flame has too much oxygen, an oxidizing flame is produced. When the amount of oxygen increases, the flame shortens due to quicker combustion, its color becomes a more transparent blue, and it hisses/roars. [2] With some exceptions (e.g., platinum soldering in jewelry), the oxidizing flame is usually undesirable for welding and soldering, since, as its name suggests, it oxidizes the metal's surface. [2] The same principle is important in firing pottery.

Reducing flame

A reducing flame is a flame with insufficient oxygen. It has an opaque yellow or orange color due to carbon or hydrocarbons [3] which bind with (or reduce) the oxygen contained in the materials the flame processes. [2] The flame is also called carburizing flame, since it tends to introduce carbon soot into the molten metal.

The flame also produces carbon monoxide, a poisonous gas which burns on the outer envelope of flame into carbon dioxide. [4]

Reducing flames with no carbon

Reducing zero-carbon fuel flames, such as reducing hydrogen flames, are exceptions. They don't have an opaque yellow or orange glow, nor do they produce soot or carbon monoxide. This is because these flames do not produce carbon dioxide.

See also

Related Research Articles

<span class="mw-page-title-main">Combustion</span> Chemical reaction between a fuel and oxygen

Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combustion does not always result in fire, because a flame is only visible when substances undergoing combustion vaporize, but when it does, a flame is a characteristic indicator of the reaction. While activation energy must be supplied to initiate combustion, the heat from a flame may provide enough energy to make the reaction self-sustaining.

<span class="mw-page-title-main">Carbon monoxide</span> Colourless, odourless, tasteless and toxic gas

Carbon monoxide is a poisonous, flammable gas that is colorless, odorless, tasteless, and slightly less dense than air. Carbon monoxide consists of one carbon atom and one oxygen atom connected by a triple bond. It is the simplest carbon oxide. In coordination complexes, the carbon monoxide ligand is called carbonyl. It is a key ingredient in many processes in industrial chemistry.

<span class="mw-page-title-main">Fire</span> Rapid and hot oxidation of a material

Fire is the rapid oxidation of a material in the exothermic chemical process of combustion, releasing heat, light, and various reaction products. At a certain point in the combustion reaction, called the ignition point, flames are produced. The flame is the visible portion of the fire. Flames consist primarily of carbon dioxide, water vapor, oxygen and nitrogen. If hot enough, the gases may become ionized to produce plasma. Depending on the substances alight, and any impurities outside, the color of the flame and the fire's intensity will be different.

<span class="mw-page-title-main">Oxide</span> Chemical compound where oxygen atoms are combined with atoms of other elements

An oxide is a chemical compound containing at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– ion with oxygen in the oxidation state of −2. Most of the Earth's crust consists of oxides. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 that protects the foil from further oxidation.

<span class="mw-page-title-main">Exhaust gas recirculation</span> NOx reduction technique used in gasoline and diesel engines

In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique used in petrol/gasoline, diesel engines and some hydrogen engines. EGR works by recirculating a portion of an engine's exhaust gas back to the engine cylinders. The exhaust gas displaces atmospheric air and reduces O2 in the combustion chamber. Reducing the amount of oxygen reduces the amount of fuel that can burn in the cylinder thereby reducing peak in-cylinder temperatures. The actual amount of recirculated exhaust gas varies with the engine operating parameters.

<span class="mw-page-title-main">Flame</span> Visible, gaseous part of a fire

A flame is the visible, gaseous part of a fire. It is caused by a highly exothermic chemical reaction taking place in a thin zone. When flames are hot enough to have ionized gaseous components of sufficient density, they are then considered plasma.

<span class="mw-page-title-main">Catalytic converter</span> Exhaust emission control device

A catalytic converter is an exhaust emission control device which converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalyzing a redox reaction. Catalytic converters are usually used with internal combustion engines fueled by gasoline or diesel, including lean-burn engines, and sometimes on kerosene heaters and stoves.

A reducing atmosphere is an atmospheric condition in which oxidation is prevented by absence of oxygen and other oxidizing gases or vapours, and which may contain actively reductant gases such as hydrogen, carbon monoxide, methane and hydrogen sulfide that would be readily oxidized to remove any free oxygen. Although Early Earth had had a reducing prebiotic atmosphere prior to the Proterozoic eon, starting at about 2.5 billion years ago in the late Neoarchaean period, the Earth's atmosphere experienced a significant rise in oxygen transitioned to an oxidizing atmosphere with a surplus of molecular oxygen (dioxygen, O2) as the primary oxidizing agent.

<span class="mw-page-title-main">Industrial processes</span> Process of producing goods

Industrial processes are procedures involving chemical, physical, electrical, or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.

<span class="mw-page-title-main">Fire triangle</span> Model for understanding the ingredients for fires

The fire triangle or combustion triangle is a simple model for understanding the necessary ingredients for most fires.

<span class="mw-page-title-main">Oxyhydrogen</span> Explosive mixture of hydrogen and oxygen gases

Oxyhydrogen is a mixture of hydrogen (H2) and oxygen (O2) gases. This gaseous mixture is used for torches to process refractory materials and was the first gaseous mixture used for welding. Theoretically, a ratio of 2:1 hydrogen:oxygen is enough to achieve maximum efficiency; in practice a ratio 4:1 or 5:1 is needed to avoid an oxidizing flame.

<span class="mw-page-title-main">Diffusion flame</span>

In combustion, a diffusion flame is a flame in which the oxidizer and fuel are separated before burning. Contrary to its name, a diffusion flame involves both diffusion and convection processes. The name diffusion flame was first suggested by S.P. Burke and T.E.W. Schumann in 1928, to differentiate from premixed flame where fuel and oxidizer are premixed prior to burning. The diffusion flame is also referred to as nonpremixed flame. The burning rate is however still limited by the rate of diffusion. Diffusion flames tend to burn slower and to produce more soot than premixed flames because there may not be sufficient oxidizer for the reaction to go to completion, although there are some exceptions to the rule. The soot typically produced in a diffusion flame becomes incandescent from the heat of the flame and lends the flame its readily identifiable orange-yellow color. Diffusion flames tend to have a less-localized flame front than premixed flames.

<span class="mw-page-title-main">Kerosene heater</span> Typically a portable, unvented, kerosene-fueled, space heating device

A kerosene heater, also known as a paraffin heater, is typically a portable, unvented, kerosene-fueled, space heating device. In Japan and other countries, they are a primary source of home heat. In the United States and Australia, they are a supplemental heat or a source of emergency heat during a power outage. Most kerosene heaters produce between 3.3 and 6.8 kilowatts.

<span class="mw-page-title-main">Propane torch</span> Tool for generating heat and flame by burning propane

A propane torch is a tool normally used for the application of flame or heat which uses propane, a hydrocarbon gas, for its fuel and ambient air as its combustion medium. Propane is one of a group of by-products of the natural gas and petroleum industries known as liquefied petroleum gas (LPG). Propane and other fuel torches are most commonly used in the manufacturing, construction and metal-working industries.

<span class="mw-page-title-main">Gas burner</span> Device used to make fire from combusting fuel and oxidizer gases

A gas burner is a device that produces a non-controlled flame by mixing a fuel gas such as acetylene, natural gas, or propane with an oxidizer such as the ambient air or supplied oxygen, and allowing for ignition and combustion.

A pyrotechnic composition is a substance or mixture of substances designed to produce an effect by heat, light, sound, gas/smoke or a combination of these, as a result of non-detonative self-sustaining exothermic chemical reactions. Pyrotechnic substances do not rely on oxygen from external sources to sustain the reaction.

<span class="mw-page-title-main">Oxy-fuel combustion process</span> Burning of fuel with pure oxygen

Oxy-fuel combustion is the process of burning a fuel using pure oxygen, or a mixture of oxygen and recirculated flue gas, instead of air. Since the nitrogen component of air is not heated, fuel consumption is reduced, and higher flame temperatures are possible. Historically, the primary use of oxy-fuel combustion has been in welding and cutting of metals, especially steel, since oxy-fuel allows for higher flame temperatures than can be achieved with an air-fuel flame. It has also received a lot of attention in recent decades as a potential carbon capture and storage technology.

<span class="mw-page-title-main">Smokeless fuel</span>

Smokeless fuel is a type of solid fuel which either does not emit visible smoke or emits minimal amounts during combustion. These types of fuel find use where the use of fuels which produce smoke, such as coal and unseasoned or wet wood, is prohibited.

<span class="mw-page-title-main">Oxy-fuel welding and cutting</span> Metalworking technique using a fuel and oxygen

Oxy-fuel welding and oxy-fuel cutting are processes that use fuel gases and oxygen to weld or cut metals. French engineers Edmond Fouché and Charles Picard became the first to develop oxygen-acetylene welding in 1903. Pure oxygen, instead of air, is used to increase the flame temperature to allow localized melting of the workpiece material in a room environment. A common propane/air flame burns at about 2,250 K, a propane/oxygen flame burns at about 2,526 K, an oxyhydrogen flame burns at 3,073 K and an acetylene/oxygen flame burns at about 3,773 K.

<span class="mw-page-title-main">Lead burning</span> Lead burning

Lead burning is a welding process used to join lead sheet. It is a manual process carried out by gas welding, usually oxy-acetylene.

References

  1. HHO gas generator, Typ: H2-3 (BlackWater) 1500 L/hour , retrieved 2021-12-24
  2. 1 2 3 "The Anatomy of a Flame", in: "Jewelry concepts and technology", by Oppi Untracht, 1983, ISBN   0-385-04185-3
  3. "Gas Age". Gas Age: Combining Natural Gas, Gas Age, Gas Record. Robbins Publishing Company. 45: 196. 1920. ISSN   0096-0780 . Retrieved 2015-01-01.
  4. "Combustion of fuels - Products and effects of combustion - GCSE Chemistry (Single Science) Revision - Other". BBC Bitesize. Retrieved 2021-12-24.