Shock metamorphism

Last updated

Shock metamorphism or impact metamorphism describes the effects of shock-wave related deformation and heating during impact events.

Contents

The formation of similar features during explosive volcanism is generally discounted due to the lack of metamorphic effects unequivocally associated with explosions and the difficulty in reaching sufficient pressures during such an event. [1]

Effects

Mineral microstructures

Planar fractures

Planar fractures are parallel sets of multiple planar cracks or cleavages in quartz grains; they develop at the lowest pressures characteristic of shock waves (~5–8 GPa) and a common feature of quartz grains found associated with impact structures. Although the occurrence of planar fractures is relatively common in other deformed rocks, the development of intense, widespread, and closely spaced planar fractures is considered diagnostic of shock metamorphism. [2]

Planar deformation features

Shocked quartz with two sets of 'decorated' planar deformation features in impact melt rock from the Suvasvesi South impact structure, Finland (thin section photomicrograph, plane polarized light). Suvasvesi shocked quartz.jpg
Shocked quartz with two sets of ‘decorated’ planar deformation features in impact melt rock from the Suvasvesi South impact structure, Finland (thin section photomicrograph, plane polarized light).

Planar deformation features, or PDFs, are optically recognizable microscopic features in grains of silicate minerals (usually quartz or feldspar), consisting of very narrow planes of glassy material arranged in parallel sets that have distinct orientations with respect to the grain's crystal structure. PDFs are only produced by extreme shock compressions on the scale of meteor impacts. They are not found in volcanic environments.

Brazil twinning in quartz

This form of twinning in quartz is relatively common but the occurrence of close-spaced Brazil twins parallel to the basal plane, (0001), has only been reported from impact structures. Experimental formation of basal-orientated Brazil twins in quartz requires high stresses (about 8 GPa) and high strain rates, and it seems probable that such features in natural quartz can also be regarded as unique impact indicators. [2]

High-pressure polymorphs

The very high pressures associated with impacts can lead to the formation of high-pressure polymorphs of various minerals. Quartz may occur as either of its two high-pressure forms, coesite and stishovite. Coesite occasionally occurs associated with eclogites formed during very high pressure regional metamorphism but was first discovered in a meteorite crater in 1960. [3] Stishovite, however, is only known from impact structures.

Reidite, the high-pressure scheelite-structure polymorph of zircon, is known only from impact structures.

Shatter cones developed in fine grained dolomite from the Wells Creek crater, USA. Wells Creek shatter cones 1.JPG
Shatter cones developed in fine grained dolomite from the Wells Creek crater, USA.

Two of the high-pressure polymorphs of titanium dioxide, one with a baddeleyite-like form and the other with a α-PbO2 structure, have been found associated with the Nördlinger Ries impact structure. [4] [5]

Diamond, the high-pressure allotrope of carbon, has been found associated with many impact structures, and both fullerenes and carbynes have been reported. [6]

Shatter cones

Shatter cones have a distinctively conical shape that radiates from the top of the cones repeating cone-on-cone, at various scales in the same sample. They are only known to form in rocks beneath meteorite impact craters or underground nuclear explosions. They are evidence that the rock has been subjected to a shock with pressures in the range of 2-30 GPa. [7] [8] [9]

Occurrence

The effects described above have been found singly, or more often in combination, associated with every impact structure that has been identified on Earth. The search for such effects therefore forms the basis for identifying possible candidate impact structures, particularly to distinguish them from volcanic features.

See also

Related Research Articles

<span class="mw-page-title-main">Impact crater</span> Circular depression in a solid astronomical body formed by the impact of a smaller object

An impact crater is a depression in the surface of a solid astronomical body formed by the hypervelocity impact of a smaller object. In contrast to volcanic craters, which result from explosion or internal collapse, impact craters typically have raised rims and floors that are lower in elevation than the surrounding terrain. Impact craters are typically circular, though they can be elliptical in shape or even irregular due to events such as landslides. Impact craters range in size from microscopic craters seen on lunar rocks returned by the Apollo Program to simple bowl-shaped depressions and vast, complex, multi-ringed impact basins. Meteor Crater is a well-known example of a small impact crater on Earth.

<span class="mw-page-title-main">Shocked quartz</span> Form of the mineral quartz, found in nuclear test sites and meteor impact zones

Shocked quartz is a form of quartz that has a microscopic structure that is different from normal quartz. Under intense pressure, the crystalline structure of quartz is deformed along planes inside the crystal. These planes, which show up as lines under a microscope, are called planar deformation features (PDFs), or shock lamellae.

<span class="mw-page-title-main">Coesite</span> Silica mineral, rare polymorph of quartz

Coesite is a form (polymorph) of silicon dioxide (SiO2) that is formed when very high pressure (2–3 gigapascals), and moderately high temperature (700 °C, 1,300 °F), are applied to quartz. Coesite was first synthesized by Loring Coes, Jr., a chemist at the Norton Company, in 1953.

<span class="mw-page-title-main">Impactite</span> Rock created or modified by impact of a meteorite

Impactite is rock created or modified by one or more impacts of a meteorite. Impactites are considered metamorphic rock, because their source materials were modified by the heat and pressure of the impact. On Earth, impactites consist primarily of modified terrestrial material, sometimes with pieces of the original meteorite.

<span class="mw-page-title-main">Arkenu structures</span>

The Arkenu structures, also known as the Arkenu craters, are a pair of prominent circular geological structures in eastern Libya. The structures are approximately 10 kilometres (6.2 mi) and 6.8 kilometres (4.2 mi) in diameter, and lie about 70 kilometres (43 mi) west of Jabal Arkanu on the eastern margin of the al-Kufrah Basin.

<span class="mw-page-title-main">Keurusselkä</span> Lake in Finland

Keurusselkä is a lake in Central Finland between the towns of Keuruu to the north and Mänttä to the south. It covers an area of 117.3 km2 (45.3 sq mi). Its average depth is 6.4 m (21 ft) with a maximum depth of 40 m (130 ft). The surface lies at 105.4 m (346 ft) above sea level. The lake is 27 km (17 mi) long and is a part of the Kokemäenjoki water system. Keurusselkä gained international publicity in 2004 when a pair of amateur geologists discovered an ancient impact structure on the western shore of the lake.

<span class="mw-page-title-main">Lake Lappajärvi</span> Impact crater lake in Finland

Lappajärvi is a lake in Finland, in the municipalities of Lappajärvi, Alajärvi and Vimpeli. It is formed in a 23 km (14 mi) wide, partly eroded meteorite impact crater. The lake is part of Ähtävänjoki basin together with Lake Evijärvi that is located downstream (north) of it.

Suavjärvi is a lake in the Republic of Karelia, Russia about 50 km north of the town of Medvezhyegorsk. The lake is approximately 3 kilometers (1.9 mi) wide.

<span class="mw-page-title-main">Shatter cone</span> Geological feature in bedrock resulting from extreme mechanical shock

Shatter cones are rare geological features that are only known to form in the bedrock beneath meteorite impact craters or underground nuclear explosions. They are evidence that the rock has been subjected to a shock with pressures in the range of 2–30 GPa (290,000–4,350,000 psi).

<span class="mw-page-title-main">Lechatelierite</span> Mineraloid

Lechatelierite is silica glass, amorphous SiO2, non-crystalline mineraloid. It is named for Henry Louis Le Chatelier.

<span class="mw-page-title-main">Stishovite</span> Tetragonal form of silicon dioxide

Stishovite is an extremely hard, dense tetragonal form (polymorph) of silicon dioxide. It is very rare on the Earth's surface; however, it may be a predominant form of silicon dioxide in the Earth, especially in the lower mantle.

<span class="mw-page-title-main">Impact structure</span> Geologic structure formed from impact on a planetary surface

An impact structure is a generally circular or craterlike geologic structure of deformed bedrock or sediment produced by impact on a planetary surface, whatever the stage of erosion of the structure. In contrast, an impact crater is the surface expression of an impact structure. In many cases, on Earth, the impact crater has been destroyed by erosion, leaving only the deformed rock or sediment of the impact structure behind. This is the fate of almost all old impact craters on Earth, unlike the ancient pristine craters preserved on the Moon and other geologically inactive rocky bodies with old surfaces in the Solar System. Impact structure is synonymous with the less commonly used term astrobleme meaning "star wound".

Edward Ching-Te Chao was one of the founders of the field of impact metamorphism, the study of the effects of meteorite impacts on the Earth's crust.

<span class="mw-page-title-main">Suevite</span> Rock consisting partly of melted material formed during an impact event

Suevite is a rock consisting partly of melted material, typically forming a breccia containing glass and crystal or lithic fragments, formed during an impact event. It forms part of a group of rock types and structures that are known as impactites.

<span class="mw-page-title-main">Seifertite</span> Dense silica mineral

Seifertite is a silicate mineral with the formula SiO2 and is one of the densest polymorphs of silica. It has only been found in Martian and lunar meteorites, where it is presumably formed from either tridymite or cristobalite – other polymorphs of quartz – as a result of heating during the atmospheric re-entry and impact to the Earth, at an estimated minimal pressure of 35 GPa. It can also be produced in the laboratory by compressing cristobalite in a diamond anvil cell to pressures above 40 GPa. The mineral is named after Friedrich Seifert (born 1941), the founder of the Bayerisches Geoinstitut at University of Bayreuth, Germany, and is officially recognized by the International Mineralogical Association.

<i>Traces of Catastrophe</i> Comprehensive technical reference on the science of impact craters

Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures is a book written by Bevan M. French of the Smithsonian Institution. It is a comprehensive technical reference on the science of impact craters. It was published in 1998 by the Lunar and Planetary Institute (LPI), which is part of the Universities Space Research Association (USRA). It was originally available in hard copy from LPI, but is now only available as a portable document format (PDF) e-book free download.

<span class="mw-page-title-main">Meteorite shock stage</span> Measure of the degree of fracturing of the matrix of a common chondrite meteorite

Meteorite shock stage is a measure of the degree of fracturing of the matrix of a common chondrite meteorite. Impacts on the parent body of a meteoroid can produce very large pressures. These pressures heat, melt and deform the rocks. This is called shock metamorphism. Meteorites are often given a rating from 1 to 6 showing the level of shock metamorphism. However, the degree of shock can vary within a meteorite on the scale of centimeters.

Bloody Creek crater, which is also known as the Bloody Creek structure, is a 420-by-350-meter in diameter elliptical feature that is located in southwestern Nova Scotia, Canada. It is argued to be either a possible extraterrestrial impact crater or an impact structure. It lies between Bridgetown and West Dalhousie, Annapolis County, Nova Scotia, where the Bloody Creek structure straddles what was once a stretch of Bloody Creek. It also is informally known as the Astrid crater.

Mineral alteration refers to the various natural processes that alter a mineral's chemical composition or crystallography.

The Maniitsoq structure is a proposed 3 billion-year-old impact structure located in the Akia terrane of the North Atlantic Craton, centred about 55 km (34 mi) south-east of the town of Maniitsoq, Greenland, at 65°15′N51°50′W. Its origin has been debated since it was first proposed as an impact structure in 2012. The Maniitsoq structure is not recognised as an impact structure by the Earth Impact Database.

References

  1. A. J. Gratz, A.J., W. J. Nellis, W.J. & Hinsey, N. 1992. Laboratory Simulations of Explosive Volcanism and Implications for the K/T boundary. Abstracts of the Lunar and Planetary Science Conference, volume 23, page 441.
  2. 1 2 Chapter 4, 'Shock-Metamorphic Effects in Rocks and Minerals' of the online book, French, B.M. 1998. Traces of Catastrophe, A handbook of shock-metamorphic effects in terrestrial meteorite impact structures, Lunar and Planetary Institute 120pp.
  3. Chao, E. C. T.; Shoemaker, E. M.; Madsen, B. M. (1960). "First Natural Occurrence of Coesite". Science . 132 (3421): 220–222. Bibcode:1960Sci...132..220C. doi:10.1126/science.132.3421.220. PMID   17748937. S2CID   45197811.
  4. El Goresy, A; Chen, M; Dubrovinsky, L; Gillet, P; Graup, G (August 2001). "An ultradense polymorph of rutile with seven-coordinated titanium from the Ries crater". Science. 293 (5534): 1467–70. doi:10.1126/science.1062342. PMID   11520981. S2CID   24349901.
  5. El Goresy, Ahmed (2001). "A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany". Earth and Planetary Science Letters. 192 (4): 485–495. Bibcode:2001E&PSL.192..485E. doi:10.1016/S0012-821X(01)00480-0.
  6. Gilmour, I (1999). "Carbon allotropes in impact-produced rocks". Meteoritics & Planetary Science . 34: A43. Bibcode:1999M&PSA..34R..43G.
  7. French, B.M. (1998). Traces of Catastrophe. Lunar and Planetary Institute . Retrieved 2007-05-20.
  8. Sagy, A.; Fineberg, J.; Reches, Z. (2004). "Shatter cones: Branched, rapid fractures formed by shock impact". Journal of Geophysical Research . 109 (B10): B10209. Bibcode:2004JGRB..10910209S. doi: 10.1029/2004JB003016 .
  9. French, Bevan M. (2005). "Stalking the Wily Shatter Cone: A Critical Guide for Impact-Crater Hunters" (PDF). Impacts in the Field. 2 (Winter). Impact Field Studies Group: s 3–10. Archived from the original (PDF) on 2011-07-20.