Stishovite

Last updated
Stishovite
Stishovite.png
Crystal structure of stishovite
General
Category Tectosilicate, quartz group
Formula
(repeating unit)
SiO2
IMA symbol Sti [1]
Strunz classification 4.DA.40 (Oxides)
Crystal system Tetragonal
Crystal class Ditetragonal dipyramidal (4/mmm)
H–M symbol: (4/m 2/m 2>/m)
Space group P42/mnm (No. 136)
Unit cell a = 4.1772(7) Å,
c = 2.6651(4) Å; Z = 2
Identification
ColorColorless (when pure)
Mohs scale hardness9.5 [2]
Luster Vitreous
Diaphaneity Transparent to translucent
Specific gravity 4.35 (synthetic)
4.29 (calculated)
Optical propertiesUniaxial (+)
Refractive index nω = 1.799–1.800
nε = 1.826–1.845
Birefringence δ = 0.027
Melting point (decomposes)
References [3] [4] [5]

Stishovite is an extremely hard, dense tetragonal form (polymorph) of silicon dioxide. It is very rare on the Earth's surface; however, it may be a predominant form of silicon dioxide in the Earth, especially in the lower mantle. [6]

Contents

Stishovite was named after Sergey M. Stishov, a Russian high-pressure physicist who first synthesized the mineral in 1961. It was discovered in Meteor Crater in 1962 by Edward C. T. Chao. [7]

Unlike other silica polymorphs, the crystal structure of stishovite resembles that of rutile (TiO2). The silicon in stishovite adopts an octahedral coordination geometry, being bound to six oxides. Similarly, the oxides are three-connected, unlike low-pressure forms of SiO2. In most silicates, silicon is tetrahedral, being bound to four oxides. [8] It was long considered the hardest known oxide (~30 GPa Vickers [2] ); however, boron suboxide has been discovered [9] in 2002 to be much harder. At normal temperature and pressure, stishovite is metastable.

Stishovite can be separated from quartz by applying hydrogen fluoride (HF); unlike quartz, stishovite will not react. [7]

Appearance

Large natural crystals of stishovite are extremely rare and are usually found as clasts of 1 to 2 mm in length. When found, they can be difficult to distinguish from regular quartz without laboratory analysis. It has a vitreous luster, is transparent (or translucent), and is extremely hard. Stishovite usually sits as small rounded gravels in a matrix of other minerals.

Synthesis

Until recently, the only known occurrences of stishovite in nature formed at the very high shock pressures (>100 kbar, or 10 GPa) and temperatures (> 1200 °C) present during hypervelocity meteorite impact into quartz-bearing rock. Minute amounts of stishovite have been found within diamonds, [10] and post-stishovite phases were identified within ultra-high-pressure mantle rocks. [11] Stishovite may also be synthesized by duplicating these conditions in the laboratory, either isostatically or through shock (see shocked quartz). [12] At 4.287 g/cm3, it is the second densest polymorph of silica, after seifertite. It has tetragonal crystal symmetry, P42/mnm, No. 136, Pearson symbol tP6. [13]

See also

Related Research Articles

<span class="mw-page-title-main">Kyanite</span> Aluminosilicate mineral

Kyanite is a typically blue aluminosilicate mineral, found in aluminium-rich metamorphic pegmatites and sedimentary rock. It is the high pressure polymorph of andalusite and sillimanite, and the presence of kyanite in metamorphic rocks generally indicates metamorphism deep in the Earth's crust. Kyanite is also known as disthene or cyanite.

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Quartz</span> Mineral made of silicon and oxygen

Quartz is a hard, crystalline mineral composed of silica (silicon dioxide). The atoms are linked in a continuous framework of SiO4 silicon–oxygen tetrahedra, with each oxygen being shared between two tetrahedra, giving an overall chemical formula of SiO2. Quartz is the second most abundant mineral in Earth's continental crust, behind feldspar.

<span class="mw-page-title-main">Silicon dioxide</span> Oxide of silicon

Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula SiO2, most commonly found in nature as quartz. In many parts of the world, silica is the major constituent of sand. Silica is one of the most complex and most abundant families of materials, existing as a compound of several minerals and as a synthetic product. Notable examples include fused quartz, fumed silica, silica gel, opal and aerogels. It is used in structural materials, microelectronics, and as components in the food and pharmaceutical industries.

<span class="mw-page-title-main">Brookite</span>

Brookite is the orthorhombic variant of titanium dioxide (TiO2), which occurs in four known natural polymorphic forms (minerals with the same composition but different structure). The other three of these forms are akaogiite (monoclinic), anatase (tetragonal) and rutile (tetragonal). Brookite is rare compared to anatase and rutile and, like these forms, it exhibits photocatalytic activity. Brookite also has a larger cell volume than either anatase or rutile, with 8 TiO2 groups per unit cell, compared with 4 for anatase and 2 for rutile. Iron (Fe), tantalum (Ta) and niobium (Nb) are common impurities in brookite.

<span class="mw-page-title-main">Cristobalite</span> Silica mineral, polymorph of quartz

Cristobalite is a mineral polymorph of silica that is formed at very high temperatures. It has the same chemical formula as quartz, SiO2, but a distinct crystal structure. Both quartz and cristobalite are polymorphs with all the members of the quartz group, which also include coesite, tridymite and stishovite. It is named after Cerro San Cristóbal in Pachuca Municipality, Hidalgo, Mexico.

<span class="mw-page-title-main">Shocked quartz</span> Form of the mineral quartz, found in nuclear test sites and meteor impact zones

Shocked quartz is a form of quartz that has a microscopic structure that is different from normal quartz. Under intense pressure, the crystalline structure of quartz is deformed along planes inside the crystal. These planes, which show up as lines under a microscope, are called planar deformation features (PDFs), or shock lamellae.

<span class="mw-page-title-main">Coesite</span> Silica mineral, rare polymorph of quartz

Coesite is a form (polymorph) of silicon dioxide Si O2 that is formed when very high pressure (2–3 gigapascals), and moderately high temperature (700 °C, 1,300 °F), are applied to quartz. Coesite was first synthesized by Loring Coes Jr., a chemist at the Norton Company, in 1953.

<span class="mw-page-title-main">Forsterite</span> Magnesium end-member of olivine, a nesosilicate mineral

Forsterite (Mg2SiO4; commonly abbreviated as Fo; also known as white olivine) is the magnesium-rich end-member of the olivine solid solution series. It is isomorphous with the iron-rich end-member, fayalite. Forsterite crystallizes in the orthorhombic system (space group Pbnm) with cell parameters a 4.75 Å (0.475 nm), b 10.20 Å (1.020 nm) and c 5.98 Å (0.598 nm).

<span class="mw-page-title-main">Tridymite</span> Silica mineral, polymorph of quartz

Tridymite is a high-temperature polymorph of silica and usually occurs as minute tabular white or colorless pseudo-hexagonal crystals, or scales, in cavities in felsic volcanic rocks. Its chemical formula is SiO2. Tridymite was first described in 1868 and the type location is in Hidalgo, Mexico. The name is from the Greek tridymos for triplet as tridymite commonly occurs as twinned crystal trillings (compound crystals comprising three twinned crystal components).

Germanium dioxide, also called germanium(IV) oxide, germania, and salt of germanium, is an inorganic compound with the chemical formula GeO2. It is the main commercial source of germanium. It also forms as a passivation layer on pure germanium in contact with atmospheric oxygen.

<span class="mw-page-title-main">Wadsleyite</span> Mineral thought to be abundant in the Earths mantle

Wadsleyite is an orthorhombic mineral with the formula β-(Mg,Fe)2SiO4. It was first found in nature in the Peace River meteorite from Alberta, Canada. It is formed by a phase transformation from olivine (α-(Mg,Fe)2SiO4) under increasing pressure and eventually transforms into spinel-structured ringwoodite (γ-(Mg,Fe)2SiO4) as pressure increases further. The structure can take up a limited amount of other bivalent cations instead of magnesium, but contrary to the α and γ structures, a β structure with the sum formula Fe2SiO4 is not thermodynamically stable. Its cell parameters are approximately a = 5.7 Å, b = 11.71 Å and c = 8.24 Å.

<span class="mw-page-title-main">Ringwoodite</span> High-pressure phase of magnesium silicate

Ringwoodite is a high-pressure phase of Mg2SiO4 (magnesium silicate) formed at high temperatures and pressures of the Earth's mantle between 525 and 660 km (326 and 410 mi) depth. It may also contain iron and hydrogen. It is polymorphous with the olivine phase forsterite (a magnesium iron silicate).

<span class="mw-page-title-main">Moganite</span> Silica mineral, rare monoclinic polymorph of quartz

Moganite is an oxide mineral with the chemical formula SiO2 (silicon dioxide) that was discovered in 1976. It was initially described as a new form of silica from specimens found in the Barranco de Medio Almud, in the municipality of Mogán on the island of Gran Canaria, in the Canary Islands (Spain), receiving in a later work the name derived from this locality. In 1994 the International Mineralogical Association decided to disapprove it as a valid mineral, since it was considered indistinguishable from quartz. Subsequent studies allowed the IMA to rectify it in 1999, accepting it as a mineral species. It has the same chemical composition as quartz, but a different crystal structure.

<span class="mw-page-title-main">Huttonite</span>

Huttonite is a thorium nesosilicate mineral with the chemical formula ThSiO4 and which crystallizes in the monoclinic system. It is dimorphous with tetragonal thorite, and isostructual with monazite. An uncommon mineral, huttonite forms transparent or translucent cream–colored crystals. It was first identified in samples of beach sands from the West Coast region of New Zealand by the mineralogist Colin Osborne Hutton (1910–1971). Owing to its rarity, huttonite is not an industrially useful mineral.

Shock metamorphism or impact metamorphism describes the effects of shock-wave related deformation and heating during impact events.

<span class="mw-page-title-main">Seifertite</span> Dense silica mineral

Seifertite is a silicate mineral with the formula SiO2 and is one of the densest polymorphs of silica. It has only been found in Martian and lunar meteorites, where it is presumably formed from either tridymite or cristobalite – other polymorphs of quartz – as a result of heating during the atmospheric re-entry and impact to the Earth, at an estimated minimal pressure of 35 GPa. It can also be produced in the laboratory by compressing cristobalite in a diamond anvil cell to pressures above 40 GPa. The mineral is named after Friedrich Seifert (born 1941), the founder of the Bayerisches Geoinstitut at University of Bayreuth, Germany, and is officially recognized by the International Mineralogical Association.

Friedrich Alfred Seifert is a German mineralogist and geophysicist. He is the founding director of Bayerisches Geoinstitut at University of Bayreuth. A silicate mineral, seifertite, is named after him.

<span class="mw-page-title-main">Keatite</span>

Keatite is a silicate mineral with the chemical formula SiO2 (silicon dioxide) that was discovered in nature in 2013. It is a tetragonal polymorph of silica first known as a synthetic phase. It was reported as minute inclusions within clinopyroxene (diopside) crystals in an ultra high pressure garnet pyroxenite body. The host rock is part of the Kokchetav Massif in Kazakhstan.

<span class="mw-page-title-main">Mineral evolution</span> Increasing mineral diversity over time

Mineral evolution is a recent hypothesis that provides historical context to mineralogy. It postulates that mineralogy on planets and moons becomes increasingly complex as a result of changes in the physical, chemical and biological environment. In the Solar System, the number of mineral species has grown from about a dozen to over 5400 as a result of three processes: separation and concentration of elements; greater ranges of temperature and pressure coupled with the action of volatiles; and new chemical pathways provided by living organisms.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 Luo, Sheng-Nian; Swadener, J. G.; Ma, Chi; Tschauner, Oliver (2007). "Examining crystallographic orientation dependence of hardness of silica stishovite" (PDF). Physica B: Condensed Matter. 399 (2): 138. Bibcode:2007PhyB..399..138L. doi:10.1016/j.physb.2007.06.011. and references therein
  3. Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C., eds. (1995). "Stishovite". Handbook of Mineralogy (PDF). Vol. II (Silica, Silicates). Chantilly, VA, US: Mineralogical Society of America. ISBN   0962209716 . Retrieved December 5, 2011.
  4. Stishovite. Mindat.org.
  5. Stishovite. Webmineral.com.
  6. Dmitry L. Lakshtanov et al. "The post-stishovite phase transition in hydrous alumina-bearing SiO2 in the lower mantle of the earth" PNAS 2007 104 (34) 13588-13590; doi : 10.1073/pnas.0706113104.
  7. 1 2 Fleischer, Michael (1962). "New mineral names" (PDF). American Mineralogist. Mineralogical Society of America. 47 (2): 172–174.
  8. Ross, Nancy L. (1990). "High pressure crystal chemistry of stishovite" (PDF). American Mineralogist. Mineralogical Society of America. 75 (7): 739–747.
  9. He, Duanwei; Zhao, Yusheng; Daemen, L.; Qian, J.; Shen, T. D.; Zerda, T. W. (2002). "Boron suboxide: As hard as cubic boron nitride". Applied Physics Letters . 81 (4): 643. Bibcode:2002ApPhL..81..643H. doi:10.1063/1.1494860.
  10. Wirth, R.; Vollmer, C.; Brenker, F.; Matsyuk, S.; Kaminsky, F. (2007). "Inclusions of nanocrystalline hydrous aluminium silicate "Phase Egg" in superdeep diamonds from Juina (Mato Grosso State, Brazil)". Earth and Planetary Science Letters. 259 (3–4): 384. Bibcode:2007E&PSL.259..384W. doi:10.1016/j.epsl.2007.04.041.
  11. Liu, L.; Zhang, J.; Greenii, H.; Jin, Z.; Bozhilov, K. (2007). "Evidence of former stishovite in metamorphosed sediments, implying subduction to >350 km" (PDF). Earth and Planetary Science Letters. 263 (3–4): 180. Bibcode:2007E&PSL.263..180L. doi:10.1016/j.epsl.2007.08.010. Archived from the original (PDF) on 2010-07-17.
  12. J. M. Léger, J. Haines, M. Schmidt, J. P. Petitet, A. S. Pereira & J. A. H. da Jornada (1996). "Discovery of hardest known oxide". Nature. 383 (6599): 401. Bibcode:1996Natur.383..401L. doi: 10.1038/383401a0 .{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. Smyth J. R.; Swope R. J.; Pawley A. R. (1995). "H in rutile-type compounds: II. Crystal chemistry of Al substitution in H-bearing stishovite" (PDF). American Mineralogist. 80 (5–6): 454–456. Bibcode:1995AmMin..80..454S. doi:10.2138/am-1995-5-605. S2CID   196903109.