List of possible impact structures on Earth

Last updated

According to the Planetary and Space Science Centre (PASSC) at the University of New Brunswick in Canada, there are 190 confirmed impact structures on Earth. Each is recorded in a database called the Earth Impact Database (EID). [1]

Contents

List of confirmed and possible impact structures

The following tables list geological features on Earth that are known impact events as well as possible, but for which there is currently no confirming scientific evidence in the peer-reviewed literature, impact events. In order for a structure to be confirmed as an impact crater, it must meet a stringent set of well-established criteria. Some proposed impact structures are likely to eventually be confirmed, whereas others are likely to be shown to have been misidentified (see below). Recent extensive surveys have been done for Australian (2005), [2] African (2014), [3] and South American (2015) [4] craters, as well as those in the Arab world (2016). [5] A book review by A. Crósta and U. Reimold disputes some of the evidence presented for several of the South American structures. [6]

NameLocationCountryDiameter (km)Age (Ma)ConfirmedNotesImageCoordinates
38th Parallel structures Missouri, etc.United States2-17320 ± 10 [7]
38th parallel structures loc.svg
37°30′N88°18′W / 37.5°N 88.3°W / 37.5; -88.3 (Hicks Dome)
37°48′N90°12′W / 37.8°N 90.2°W / 37.8; -90.2 (Avon crater)
37°48′N91°24′W / 37.8°N 91.4°W / 37.8; -91.4 (Crooked Creek crater)
37°54′N92°42′W / 37.9°N 92.7°W / 37.9; -92.7 (Decaturville crater)
37°42′N92°24′W / 37.7°N 92.4°W / 37.7; -92.4 (Hazelgreen crater)
38°00′N93°36′W / 38.0°N 93.6°W / 38.0; -93.6 (Weaubleau-Osceola structure)
37°42′N95°42′W / 37.7°N 95.7°W / 37.7; -95.7 (Rose Dome)
Acraman South Australia Australia90590Yes [8] 32°1′S135°27′E / 32.017°S 135.450°E / -32.017; 135.450
Ak-Bura (Murgab) Tajikistan Tajikistan 0.0800.0003
(1700 AD)
[9] [10] [11] [12] 38°5′38.5″N74°16′58″E / 38.094028°N 74.28278°E / 38.094028; 74.28278 (Ak-Bura)
Al Madafi Saudi Arabia Saudi Arabia 66-66 [13] [14] [15] 28°40′N37°11′E / 28.67°N 37.18°E / 28.67; 37.18 (Al Madafi)
Alamo bolide impact Nevada United States100 ± 40367 [16] [17] [note 1] 37°19′N116°11′W / 37.31°N 116.18°W / 37.31; -116.18 (Alamo)
Amelia Creek Northern TerritoryAustralia20600-1660Yes 20°55′S134°50′E / 20.917°S 134.833°E / -20.917; 134.833 (Amelia Creek)
Ames OklahomaUnited States470 ± 30Yes 36°17′4″N98°11′38″W / 36.28444°N 98.19389°W / 36.28444; -98.19389 (Ames)
Amguid Algeria<1Yes
CratereAmguid.jpg
26°5′16″N4°23′43″E / 26.08778°N 4.39528°E / 26.08778; 4.39528 (Amguid)
Anéfis Mali Mali 3.923? [20] [9] [21] [22] 18°04′19″N0°02′53″W / 18.072°N 0.048°W / 18.072; -0.048 (Anefis)
Aorounga Central Chad Chad 11.6<345Yes [23] [24] [25]
Aorounga Impact Crater, Chad.jpg
19°13′44″N19°15′40″E / 19.229°N 19.261°E / 19.229; 19.261 (Aorounga center)
Aouelloul MauritaniaMauritania0.393.0 ± 0.3Yes
Araguainha Central BrazilBrazil40244.4Yes 16°47′S52°59′W / 16.783°S 52.983°W / -16.783; -52.983
Arganaty Almaty region Kazakhstan 300250 [26] [27] [28] [note 1] 46°30′N79°48′E / 46.5°N 79.8°E / 46.5; 79.8 (Arganaty)
Arlit Niger Niger 10 ? [29] [30] [31] 21°21′11″N9°08′42″E / 21.353°N 9.145°E / 21.353; 9.145 (Arlit)
Avak AlaskaUnited States123-95Yes [32]
Azuara Spain Spain 35-4030-40 [33]
Azuara-impact-structure-Map.jpg
41°07′N0°13′W / 41.117°N 0.217°W / 41.117; -0.217 (Azuara)
Bajada del Diablo Argentina Argentina 400.45 ± 0.3 [34] [35] [36] 42°49′S67°28′W / 42.817°S 67.467°W / -42.817; -67.467 (Bajada del Diablo)
Bajo Hondo Argentina Argentina 3.9<10 [37] [38] 42°17′44″S67°55′27″W / 42.295454°S 67.924133°W / -42.295454; -67.924133 (Bajo Hondo)
Bangui magnetic anomaly Central African Republic Central African Republic 600-800? >542 [39] [3] [40]
Bangui anomaly.JPG
6°00′N18°18′E / 6°N 18.3°E / 6; 18.3 (Bangui)
Barringer Meteorite ArizonaUnited States1.180.049 ± 0.003Yes [41]
Bateke Plateau Gabon Gabon 7.1<2.6 [42] [43] 0°38′45″S14°27′29″E / 0.64583°S 14.45806°E / -0.64583; 14.45806 (Bateke)
Beaverhead Montana United States60600Yes 44°15′N114°0′W / 44.250°N 114.000°W / 44.250; -114.000
Bedout Australia (offshore)Australia250250 [44] [45] [2] 18°S119°E / 18°S 119°E / -18; 119 (Bedout)
Beyenchime-Salaatin RussiaRussia840 ± 20Yes
Bee Bluff Texas United States2.440? [46] [47] [48] [note 1] 29°02′N99°51′W / 29.03°N 99.85°W / 29.03; -99.85 (Bee Bluff)
Bigach KazakhstanKazakhstan85 ± 3Yes
Björkö Björkö, Ekerö Sweden 101200 [49] [50] 59°18′N17°36′E / 59.30°N 17.60°E / 59.30; 17.60 (Björkö)
Bloody Creek Nova Scotia Canada40 ? [51] 44°45′N65°14′W / 44.750°N 65.233°W / 44.750; -65.233 (Bloody Creek)
Bohemian Czech Republic Czech Republic 260-300>700? [52] [9] [53] [54] 50°00′N14°42′E / 50.0°N 14.7°E / 50.0; 14.7 (Bohemian)
Boltysh Kirovohrad Oblast Ukraine2465.17Yes 48°54′N32°15′E / 48.900°N 32.250°E / 48.900; 32.250
Bow City Alberta Canada870 [55] 50°25′N112°16′W / 50.417°N 112.267°W / 50.417; -112.267 (Bow City)
Bowers Antarctic Ocean (Ross Sea)1003-5 [56] [57] [58] [59] 71°12′S176°00′E / 71.2°S 176°E / -71.2; 176 (Bowers)
Brushy Creek Feature Louisiana United States2.00.011–0.030 [60] [61] [62] [63] 30°46′N90°44′W / 30.76°N 90.73°W / 30.76; -90.73 (Brushy Creek Feature)
Bukit Bunuh Perak Malaysia5–61.34–1.84 [64] [65] 5°04′30″N100°58′30″E / 5.075°N 100.975°E / 5.075; 100.975 (Bukit Bunuh)
Burckle Indian Ocean 30?3000 BC [66] [67] [68] 30°52′S61°22′E / 30.86°S 61.36°E / -30.86; 61.36 (Burckle)
Carswell Saskatchewan Canada39115Yes 58°27′N109°30′W / 58.450°N 109.500°W / 58.450; -109.500
Catalina structures
(Navy, Catalina, Emery Knoll)
Pacific Ocean (NE)12, 32, 3716-18 [69] [70] [71] 32°55′N118°05′W / 32.91°N 118.09°W / 32.91; -118.09 (Catalina)
Cerro do Jarau Paraná Brazil10117 [72] [73] [74] 30°12′S56°32′W / 30.200°S 56.533°W / -30.200; -56.533 (Cerro)
Charity Shoal Ontario Canada1.2<470 [75] [76] [77] [78]
NOAA map of Charity Shoal in Lake Ontario.jpg
44°2′15″N76°29′37″W / 44.03750°N 76.49361°W / 44.03750; -76.49361 (Charity Shoal)
Charlevoix QuebecCanada54342Yes 47°32′N70°18′W / 47.533°N 70.300°W / 47.533; -70.300
Chesapeake Bay VirginiaUnited States4034.86 ± 0.23Yes [79] 37°17′N76°1′W / 37.283°N 76.017°W / 37.283; -76.017
Clearwater East QuebecCanada26460-470Yes [80]
Clearwater West QuebecCanada36290Yes 56°13′N74°30′W / 56.217°N 74.500°W / 56.217; -74.500
Chicxulub Yucatán Mexico15066.051 ± 0.031Yes 21°20′N89°30′W / 21.333°N 89.500°W / 21.333; -89.500
Corossol QuebecCanada4<470 [81] [82] [83] [84] 50°03′N66°23′W / 50.050°N 66.383°W / 50.050; -66.383 (Corossol)
Darwin Crater Tasmania Australia1.20.816 [85] [note 1]
Darwin Crater Landsat.jpg
42°19′S145°40′E / 42.317°S 145.667°E / -42.317; 145.667 (Darwin crater)
Decorah Iowa United States5.6470 [86] [87] [88]
USGS Decorah crater.jpg
43°18′50″N91°46′20″W / 43.31389°N 91.77222°W / 43.31389; -91.77222 (Decorah)
Deniliquin New South Wales Australia520400–500No 35°32′0″S144°58′0″E / 35.53333°S 144.96667°E / -35.53333; 144.96667 (Deniliquin)
Dhala Madhya Pradesh India111700-2100Yes 25°18′N78°8′E / 25.300°N 78.133°E / 25.300; 78.133
Diamantina River ring feature Queensland Australia120300 [89] [90]
UpperDiamantinaCrustalAnomaly.png
22°09′S141°54′E / 22.150°S 141.900°E / -22.150; 141.900 (Winton crustal anomaly)
Dumas magnetic anomaly Saskatchewan Canada3.270 ± 5 [91] [92] 49°55′N102°07′W / 49.92°N 102.12°W / 49.92; -102.12 (Dumas)
Duolun Inner Mongolia China120 ± 50129 ± 3 [93] [94] 42°3′N116°15′E / 42.050°N 116.250°E / 42.050; 116.250 (Duolun)
El-Baz Egypt Egypt 4 ? [95] [25] [96] 24°12′N26°24′E / 24.200°N 26.400°E / 24.200; 26.400 (El-Baz)
Eltanin Pacific Ocean (SE)35?2.5 [97] [98] [99] [note 1] 57°47′S90°47′W / 57.783°S 90.783°W / -57.783; -90.783 (Eltanin)
Faya Basin Chad Chad 2385 ± 15 [100] [101] 18°10′N19°34′E / 18.167°N 19.567°E / 18.167; 19.567 (Faya)
Falkland Plateau anomaly Atlantic Ocean
(near Falkland Islands)
250-300250 [102] [103] [104] [105] [106] 51°S62°W / 51°S 62°W / -51; -62 (Malvinas)
Fried Egg structure Atlantic Ocean (near Azores)617 [107] [108] 36°N27°W / 36°N 27°W / 36; -27 (Fried Egg)
Garet El Lefet Libya Libya 3 ? [109] [110] [111] 25°00′N16°30′E / 25.0°N 16.5°E / 25.0; 16.5 ("Garet El Lefet")
Gatun Panama Panama 320 [112] [113] [114] 09°05′58″N79°47′22″W / 9.09944°N 79.78944°W / 9.09944; -79.78944 (Gatun structure)
General San Martín Argentina Argentina 111.2 [115] [116] [117] 38°0′S63°18′W / 38.000°S 63.300°W / -38.000; -63.300 (General San Martin)
Gnargoo Western Australia Australia75<300 [118] [119] 24°48′24″S115°13′29″E / 24.80667°S 115.22472°E / -24.80667; 115.22472 (Gnargoo)
Gosses Bluff Northern Territory Australia22142.5Yes 23°49′S132°18′E / 23.817°S 132.300°E / -23.817; 132.300
Guarda Portugal Portugal 30200 [120] [121] [122] 40°38′N07°06′W / 40.633°N 7.100°W / 40.633; -7.100 (Guarda)
Hartney anomaly Manitoba Canada8120 ± 20 [123] [92] [124] 49°24′N100°40′W / 49.4°N 100.67°W / 49.4; -100.67 (Hartney)
Haughton NunavutCanada2339Yes 75°23′N89°40′W / 75.383°N 89.667°W / 75.383; -89.667
Hiawatha Greenland Greenland 3157.99 ± 0.54 [125] [126] [127]
Hiawatha v45 scene1 4k 5mtopo.1760.tif
78°44′N66°14′W / 78.733°N 66.233°W / 78.733; -66.233 (Hiawatha)
Hico Texas United States9<60 [128] [129] [130] 32°01′N98°02′W / 32.01°N 98.03°W / 32.01; -98.03 (Hico)
Hotchkiss Alberta Canada4220 ± 100 [131] [132] 57°32′20″N118°52′41″W / 57.539°N 118.878°W / 57.539; -118.878 (Hotchkiss)
Howell Tennessee United States2.5380 ± 10 [133] [134] [135] 35°14′N86°37′W / 35.23°N 86.61°W / 35.23; -86.61 (Howell)
Ibn-Batutah Libya Libya 2.5120 ± 20 [136] [137] 21°34′10″N20°50′15″E / 21.56944°N 20.83750°E / 21.56944; 20.83750 (Ibn-Batutah)
Ilumetsa Põlva County Estonia 0.080.0066
(<4600 BC)
[138] [139] Ilumetsa crater, Estonia.jpg 57°57′N27°24′E / 57.950°N 27.400°E / 57.950; 27.400
Ishim Akmola region Kazakhstan 300430-460 [140] [141] [142] [note 1] 52°0′N69°0′E / 52.000°N 69.000°E / 52.000; 69.000 (Ishim Akmola)
Iturralde Bolivia Bolivia 8.00.011–0.030 [143]
Iturralde Crater PIA03359 cropped.jpg
12°35′S67°40′W / 12.583°S 67.667°W / -12.583; -67.667 (Iturralde)
Jackpine Creek magnetic anomaly British Columbia Canada25120 ± 20 [144] [145] 55°36′N120°06′W / 55.6°N 120.1°W / 55.6; -120.1 (Jackpine)
Jalapasquillo Puebla Mexico1.2<10 [146] [147] 19°13′23″N97°25′44″W / 19.2231°N 97.429°W / 19.2231; -97.429 (Jalapasquillo)
Jebel Hadid Libya Libya 4.7<66 [148] [149] 20°52′12″N22°42′18″E / 20.87000°N 22.70500°E / 20.87000; 22.70500 (Jebel Hadid)
Jeptha Knob Kentucky United States4.3425 [150] [note 1] 38°11′N85°07′W / 38.183°N 85.117°W / 38.183; -85.117 (Jeptha Knob)
Johnsonville South Carolina United States11300? [151] [9] [152] [note 1] 33°49′N79°22′W / 33.817°N 79.367°W / 33.817; -79.367 (Snows Island)
Jwaneng South Botswana Botswana 1.3<66 [153] [154] 24°42′S24°46′E / 24.700°S 24.767°E / -24.700; 24.767 (Jwaneng South)
Kamensk Southern Federal District Russia2549Yes 48°21′N40°30′E / 48.350°N 40.500°E / 48.350; 40.500
Kara Nenetsia, offshoreRussia6570.3 ± 2.2Yes [155] [156]
Kara crateri crater Russia lansat 7 image.gif
69°17′N65°21′E / 69.28°N 65.35°E / 69.28; 65.35 (Ust-Kara)
Kebira Egypt Egypt 31100 [157] [158]
Kebira Crater.jpg
24°40′N24°58′E / 24.667°N 24.967°E / 24.667; 24.967 (Kebira)
Kilmichael Mississippi United States1345 [159] [160] [161] [162] 33°30′N89°33′W / 33.5°N 89.55°W / 33.5; -89.55 (Kilmichael)
Krk Croatia Croatia 1240 [163] [164] 45°04′N14°37′E / 45.06°N 14.62°E / 45.06; 14.62 (Krk)
Kurai Basin Altai Region Russia20<200 [165] [166] 50°12′N87°54′E / 50.200°N 87.900°E / 50.200; 87.900 (Kurai)
La Dulce Argentina Argentina 2.80.445? [167] [116] 38°13′S59°13′W / 38.21°S 59.21°W / -38.21; -59.21 (La Dulce)
Labynkyr Russia Russia67150? [168] [9] [169] [170] [note 1] 62°19′30″N143°05′24″E / 62.325°N 143.090°E / 62.325; 143.090 (Labynkyr)
Lac Iro Chad Chad 13 ? [171] [3] [172]
Lake Iro.jpg
10°10′N19°40′E / 10.167°N 19.667°E / 10.167; 19.667 (Iro Lake)
Lairg Gravity Low Scotland Scotland 401200 [173] 58°1′12″N4°24′0″W / 58.02000°N 4.40000°W / 58.02000; -4.40000
Lake Cheko Siberia Russia500.0001
(1908 AD)
[174] 60°57′50″N101°51′36″E / 60.964°N 101.86°E / 60.964; 101.86 (Cheko)
Lake Tai (Tai Hu) Jiangsu China70 ± 5365 ± 5 [175] [176] [177] 31°14′N120°8′E / 31.233°N 120.133°E / 31.233; 120.133 (Tai)
Loch Leven Scotland Scotland 18x8290 [178] [179] 56°12′N3°23′W / 56.200°N 3.383°W / 56.200; -3.383 (Loch Leven)
Lonar Deccan Plateau, Southern IndiaIndia1.830.57 ± 0.05Yes [180]
Lorne Basin New South Wales Australia30250 ± 2 [181] [182] 31°36′S152°37′E / 31.60°S 152.62°E / -31.60; 152.62 (Lorne)
Lycksele 2 Sweden Sweden 1301500 ± 300 [183] [184] [185] 64°55′N18°47′E / 64.92°N 18.78°E / 64.92; 18.78 (Lycksele)
Madagascar 3 Madagascar Madagascar 12 ? [186] [187] 18°50′20″S46°13′16″E / 18.839°S 46.221°E / -18.839; 46.221 (Madagascar)
Magyarmecske anomaly Hungary Hungary 7299 [188] [189] 45°57′N17°58′E / 45.95°N 17.97°E / 45.95; 17.97 (Magyarmecske)
Mahuika New Zealand (offshore) New Zealand 20?0.0006
(1400 AD)
[190] [191] [67] 48°18′S166°24′E / 48.3°S 166.4°E / -48.3; 166.4 (Mahuika)
Manicouagan QuebecCanada100215.56 ± 0.05Yes 51°23′N68°42′W / 51.383°N 68.700°W / 51.383; -68.700
Maniitsoq Greenland Greenland 1003000 [192] [193] [194] 65°15′N51°50′W / 65.250°N 51.833°W / 65.250; -51.833 (Maniitsoq)
Mejaouda (El Mrayer) Mauritania Mauritania 3<542? [195] [9] [111] [21] [196] 22°43′19″N7°18′43″W / 22.722°N 7.312°W / 22.722; -7.312 (Mejaouda)
Merewether Newfoundland Canada200.0009
(1100 AD)
[197] [198] [note 1] 58°02′N64°03′W / 58.04°N 64.05°W / 58.04; -64.05 (Merewether)
Meseta de la Barda Negra Argentina Argentina 1.54 ± 1 [199] [200] 39°10′S69°53′W / 39.167°S 69.883°W / -39.167; -69.883 (Barda Negra)
Middle-Urals Ring Russia Russia400–550 >542 [201] [202] [203] 56°N56°E / 56°N 56°E / 56; 56 (Urals Ring)
Mistassini-Otish QuebecCanada6002200 [204] [205] 50°34′N73°25′W / 50.57°N 73.42°W / 50.57; -73.42 (Mistassini lake)
Mount Ashmore dome Indian Ocean (in Timor Sea)>5035 [206] [207] [208] 12°33′S123°12′E / 12.55°S 123.2°E / -12.55; 123.2
Mousso Chad Chad 3.8<542 [209] [210] 17°58′N19°53′E / 17.967°N 19.883°E / 17.967; 19.883 (Mousso)
Mt. Oikeyama Japan Japan 900.030? [211] [212] 35°24′18″N138°00′47″E / 35.405°N 138.013°E / 35.405; 138.013 (Oikeyama)
Mulkarra South Australia Australia17105 [213] [214] 27°51′S138°55′E / 27.85°S 138.92°E / -27.85; 138.92 (Mulkarra)
Nastapoka (Hudson Bay) arc QuebecCanada4501800? [215] [9] [216] [217]
Arc Nastapoka.png
57°00′N78°50′W / 57.000°N 78.833°W / 57.000; -78.833 (Hudson Bay)
Nadir Atlantic Ocean (Guinea Plateau, West Africa)≥8.566 ± 0.8 [218] 9°24′N17°06′W / 9.4°N 17.1°W / 9.4; -17.1 (Nadir)
Ouro Ndia Mali Mali 3<2.6 [219] [9] [21] 14°59.8′N4°30.0′W / 14.9967°N 4.5000°W / 14.9967; -4.5000 (Ouro Ndia)
Pantasma Nicaragua Nicaragua 10 ? [220] 13°22′N85°57′W / 13.37°N 85.95°W / 13.37; -85.95 (Pantasma)
Panther Mountain New York United States10375 [221] [222] [223]
Panther rosette stream pattern.gif
42°03′N74°24′W / 42.050°N 74.400°W / 42.050; -74.400 (Panther Mountain)
Peerless Montana United States6470 ± 10 [224] [225] 48°48′N105°48′W / 48.8°N 105.8°W / 48.8; -105.8 (Peerless)
Piratininga Paraná Brazil12117 [226] [73] [227] 22°28′S49°09′W / 22.467°S 49.150°W / -22.467; -49.150 (Piratininga)
Popigai SiberiaSiberia10035.7±0.2Yes 71°39′N111°11′E / 71.650°N 111.183°E / 71.650; 111.183
Praia Grande Santos Basin, offshoreBrazil2084 [228] [73] [74] 25°39′S45°37′W / 25.650°S 45.617°W / -25.650; -45.617 (prai grande)
Ramgarh Rajasthan India3 ? [229] [230] [231] [note 1]
Ramgarh Crater.JPG
25°20′16″N76°37′29″E / 25.33778°N 76.62472°E / 25.33778; 76.62472 (Ramgarh)
Rochechouart impact structure Rochechouart France23206.9 45°49′27″N0°46′54″E / 45.82417°N 0.78167°E / 45.82417; 0.78167 (Rochechouart)
Ross Antarctic Ocean (Ross Sea)600?<38 [232] [57] [233] 77°30′S178°30′E / 77.5°S 178.5°E / -77.5; 178.5 (Ross)
Rubielos de la Cérida Spain Spain 80x4030-40 [234] [235] [236] [note 1]
Rubielos de la Cerida impact structure-karte topo.jpg
40°46′59″N1°15′00″W / 40.783°N 1.25°W / 40.783; -1.25 (Rubielos)
Sakhalinka Pacific Ocean (NW)1270 [237] [238] [239] [240] [241] 30°15′N170°03′E / 30.250°N 170.050°E / 30.250; 170.050 (Sakhalinka)
São Miguel do Tapuio Piauí Brazil22120 [242] [9] [74] [243] [244] [245] 5°37.6′S41°23.3′W / 5.6267°S 41.3883°W / -5.6267; -41.3883 (Sao Miguel Do Tapuio)
Shanghewan Jilin China30 ? [246] [247] [248] 44°29′N126°11′E / 44.483°N 126.183°E / 44.483; 126.183 (Shangewan)
Shiva Indian Ocean 50066 [249] 18°40′N70°14′E / 18.667°N 70.233°E / 18.667; 70.233 (Shiva)
Shiyli Kazakhstan Kazakhstan 5.546 ± 7 [250] [251] [note 1] 49°10′N57°51′E / 49.167°N 57.850°E / 49.167; 57.850 (Shiyli)
Silverpit Atlantic Ocean (North Sea)2060 ± 15 [252] [253] [254] [255] [256] [257] [258] [259]
Silverpit northwest perspective.jpg
54°14′N1°51′E / 54.233°N 1.850°E / 54.233; 1.850 (Silverpit)
Sirente Italy Italy 100.0017
(320 ± 90 AD)
[260] [261] 42°10′38″N13°35′45″E / 42.17722°N 13.59583°E / 42.17722; 13.59583 (Sirente)
Sithylemenkat Lake Alaska United States120.033? [262] [263] [264] [265] 66°07′34″N151°23′20″W / 66.12611°N 151.38889°W / 66.12611; -151.38889 (Sithylemenkat)
Smerdyacheye Lake Russia Russia200.01–0.03? [266] [267] Ozero Smerdiach'e.jpg 55°44′06″N39°49′23″E / 55.735°N 39.823°E / 55.735; 39.823 (Smerdyacheye)
Sudan 1 (Red Sea Hills) Sudan Sudan 6 ? [268] [269] [270] 17°57.1′N37°56.1′E / 17.9517°N 37.9350°E / 17.9517; 37.9350 (Red Sea)
Sudan 2 (Bayuda) Sudan Sudan 10 ? [271] [272] [273]
Sudan adm location map.svg
Red pog.svg
Mahas
Red pog.svg
Bayuda
Red pog.svg
Red Sea Hills
18°03.5′N33°30.2′E / 18.0583°N 33.5033°E / 18.0583; 33.5033 (Bayuda)
Sudan 3 (Mahas) Sudan Sudan 2.8 ?[ citation needed ] 20°01.9′N30°13.7′E / 20.0317°N 30.2283°E / 20.0317; 30.2283 (Mahas)
Sudbury OntarioCanada1301849Yes 46°36′N81°11′W / 46.600°N 81.183°W / 46.600; -81.183
Svetloyar Lake Russia Russia400.0026
(600 BC)
[274] [275] [note 1] 7-e chudo Povolzh'ia.jpg 56°49′08″N45°05′35″E / 56.819°N 45.093°E / 56.819; 45.093 (Svetloyar)
Takamatsu Japan Japan4-815 [276] [277] [278] [279] [280] 34°18′N134°03′E / 34.3°N 134.05°E / 34.3; 134.05 (Takamatsu)
Tarek (Gilf Kebir) Egypt Egypt2.1112? [281] [9] [282] [283] 24°36′04″N27°12′18″E / 24.601°N 27.205°E / 24.601; 27.205 (Tarek)
Tatarsky North Pacific Ocean (NW)14 ? [284] [285] 49°57′35″N141°23′40″E / 49.95972°N 141.39444°E / 49.95972; 141.39444 (Tatarsky1)
Tatarsky South Pacific Ocean (NW)20 ? [286] [285] 48°17′38″N141°23′40″E / 48.29389°N 141.39444°E / 48.29389; 141.39444 (Tatarsky2)
Tefé River Amazonas Brazil1565 ± 20 [287] [74] [288] 4°57′S66°03′W / 4.950°S 66.050°W / -4.950; -66.050 (Tefé)
Talundilly Queensland Australia84128 ± 5 [289] [290] [291] 24°44′S144°37′E / 24.73°S 144.62°E / -24.73; 144.62 (Talundilly)
Temimichat Mauritania Mauritania0.72? [292] [9] [293] 24°15′N9°39′W / 24.250°N 9.650°W / 24.250; -9.650 (Temimichat)
Tsenkher Mongolia Mongolia3.65 [294] [295] [296] 43°38′41″N98°22′09″E / 43.64472°N 98.36917°E / 43.64472; 98.36917 (Tsenkher)
Toms Canyon New Jersey United States2235 [297] [298] [299] [300] 39°08′N72°51′W / 39.133°N 72.850°W / 39.133; -72.850 (Toms Canyon)
Vélingara Senegal Senegal4823-40 [301] [302]
Velingara ring-structur in senegal.png
13°02′N14°08′W / 13.033°N 14.133°W / 13.033; -14.133 (Vélingara)
Versailles Kentucky United States1.5<400 [303] [304] 38°05′N84°40′W / 38.09°N 84.67°W / 38.09; -84.67 (Versailles)
Vredefort Free State South Africa180-3002023Yes [305] 27°0′S27°30′E / 27.000°S 27.500°E / -27.000; 27.500
Vichada Vichada Colombia5030? [306] [9]
Vichada Structure Skylab G40B091120000.jpg
4°30′N69°15′W / 4.500°N 69.250°W / 4.500; -69.250 (Vichada)
Victoria Island California United States5.537-49 [307] 37°53′N121°32′W / 37.89°N 121.53°W / 37.89; -121.53 (Victoria Island structure)
Warburton East South Australia Australia200300-360 [308] [309] [310] 28°00′S140°30′E / 28°S 140.5°E / -28; 140.5 (Warbuton)
Warburton West South Australia Australia200300-360 [308] [309] [311]
Weaubleau (Weaubleau-Osceola) Missouri United States19330 ± 10 [312] [313] [314]
Weaubleau Structure shaded relief.jpg
38°00′N93°36′W / 38.0°N 93.6°W / 38.0; -93.6 (Weaubleau)
Wembo-Nyama (Omeonga) DR Congo DR Congo36-4660? [315] [316] [317] 3°37′52″S24°31′07″E / 3.63111°S 24.51861°E / -3.63111; 24.51861 (Wembo-Nyama ring structure)
Wilkes Land 2 Antarctica 480250-500 [318]
Antarctica Map Wilkes L Crater.png
70°S140°E / 70°S 140°E / -70; 140 (Wilkes)
Wolfe Creek Great Sandy Desert, Western AustraliaAustralia0.87< 0.3Yes
Woodbury Georgia United States7500 ± 100 [319] [320] [321] [322] 32°55′N84°33′W / 32.92°N 84.55°W / 32.92; -84.55 (Woodbury)
Yallalie Western Australia Australia1299? [323] [9] [324] [325] [326] [327] [note 1] 30°26′40″S115°46′16″E / 30.44444°S 115.77111°E / -30.44444; 115.77111 (Yallalie)
Zerelia West Greece Greece200.0070
(5000 BC)
[328] [329] 39°09′48″N22°42′32″E / 39.16333°N 22.70889°E / 39.16333; 22.70889 (Zerelia West)
Zerelia East Greece Greece100.0070
(5000 BC)
[328] [329] 39°09′43″N22°42′51″E / 39.16194°N 22.71417°E / 39.16194; 22.71417 (Zerelia East)

Overview

Russia's Lake Cheko is thought by one research group to be the result of the famous Tunguska event, although sediments in the lake have been dated back more than 5,000 years. There is highly speculative conjecture about the supposed Sirente impact (c. 320 ± 90 AD) having caused the Roman emperor Constantine's vision at Milvian Bridge. [330] [ better source needed ]

The Burckle crater and Umm al Binni structure are proposed to be behind the floods that affected Sumerian civilization. [331] [332] The Kachchh impact may have been witnessed by the Harappan civilization and mentioned as a fireball in Sanskrit texts. [333]

Shortly after the Hiawatha Crater was discovered, researchers suggested that the impact could have occurred as late as ~12,800 years ago, leading some to associate it with the controversial Younger Dryas impact hypothesis (YDIH). [334] James Kennett, a leading advocate of the YDIH said, "I'd unequivocally predict that this crater is the same age as the Younger Dryas." [335]

These claims were criticised by other scholars. According to impact physicist Mark Boslough writing for Skeptical Inquirer the first reports of the impact released by science journalist Paul Voosen focused on this being a young crater which according to Boslough "set the tone for virtually all the media reporting to follow". Boslough argued, based on evidence and statistical probability, that once the crater has been drilled and researched "it will turn out to be much older." He complained that this important discovery "was tainted by connections to a widely discredited hypothesis and speculations that did not make it through peer review". [335] [336] The YDIH has since been refuted comprehensively by a team of earth scientists and impact experts. [337]

A 2022 study using Argon–Argon dating of shocked zircon crystals in impact melt rocks found outwash less than 10 km downstream of the glacier pushed the estimate back to around 57.99 ± 0.54 million years ago, during the late Paleocene. [338] [127] Confirmation would require drilling almost one km (3,300 ft) through the ice sheet above the crater to obtain a sample of dateable, solidified impact melt from the crater.

The age of the Bloody Creek crater [339] is uncertain.

As the trend in the Earth Impact Database for about 26 confirmed craters younger than a million years old shows that almost all are less than two km (1.2 mi) in diameter (except the three km (1.9 mi) Agoudal and four km (2.5 mi) Rio Cuarto), the suggestion that two large craters, Mahuika (20 km (12 mi)) and Burckle (30 km (19 mi)), formed only within the last few millennia has been met with skepticism. [340] [341] [342] However, the source of the young (less than a million years old) and enormous Australasian strewnfield (c. 790 ka) is suggested to be a crater about 100 km (62 mi) across somewhere in Indochina, [343] [344] with Hartung and Koeberl (1994) proposing the elongated 100 km × 35 km (62 mi × 22 mi) Tonlé Sap lake in Cambodia (visible in the map at the side) as a suspect structure. [345]

The Decorah crater has been conjectured as being part of the Ordovician meteor event. [346] [ better source needed ]

Several twin impacts have been proposed, such as the Rubielos de la Cérida and Azuara (30–40 Ma), [347] Cerro Jarau and Piratininga (c. 117 Ma), [73] and Warburton East and West (300–360 Ma). [348] However, adjacent craters may not necessarily have formed at the same time, as demonstrated by the case of the confirmed Clearwater East and West lakes.

Some confirmed impacts like Sudbury or Chicxulub are also sources of magnetic anomalies [349] and/or gravity anomalies. The magnetic anomalies Bangui and Jackpine Creek, [145] the gravity anomalies Wilkes Land crater and Falkland Islands, [350] and others have been considered as being of impact origin. Bangui apparently has been discredited, [25] [351] but appears again in a 2014 table of unconfirmed structures in Africa by Reimold and Koeberl. [3]

Several anomalies in Williston Basin were identified by Swatzky in the 1970s as astroblemes including Viewfield, Red Wing Creek, Eagle Butte, Dumas, and Hartney, of which only the last two are unconfirmed. [92]

The Eltanin impact has been confirmed (via an iridium anomaly and meteoritic material from ocean cores) but, as it fell into the Pacific Ocean, apparently no crater was formed. The age of Silverpit and the confirmed Boltysh crater (65.17 ± 0.64 Ma), as well as their latitude, has led to the speculative hypothesis that there may have been several impacts during the KT boundary. [352] [353] Of the five oceans in descending order by area, namely the Pacific, Atlantic, Indian, Antarctic, and Arctic, only the smallest (the Arctic) does not yet have a proposed unconfirmed impact crater.

Craters larger than 100 kilometres (62 mi) in the Phanerozoic (after 541 Ma) are notable for their size as well as for the possible coeval events associated with them especially the major extinction events.

For example, the Ishim impact structure [141] is conjectured to be bounded by the late Ordovician-early Silurian (c. 445 ± 5 Ma), [142] the two Warburton basins have been linked to the Late Devonian extinction (c. 360 Ma), [310] both Bedout and the Wilkes Land crater have been associated with the severe Permian–Triassic extinction event (c. 252 Ma), [354] [355] Manicouagan (c. 215 Ma) was once thought to be connected to the Triassic–Jurassic extinction event (c. 201 Ma) [356] but more recent dating has made it unlikely, while the consensus is the Chicxulub impact caused the one for Cretaceous–Paleogene (c. 66 Ma).

However, other extinction theories employ coeval periods of massive volcanism such as the Siberian Traps (Permian-Triassic) and Deccan Traps (Cretaceous-Paleogene).

Undiscovered but inferred

Australasian strewnfield. Shaded areas represent tektite finds. Australasian strewnfield.jpg
Australasian strewnfield. Shaded areas represent tektite finds.

There is geological evidence for impact events having taken place on Earth on certain specific occasions, which should have formed craters, but for which no impact craters have been found. In some cases this is because of erosion and Earth's crust having been recycled through plate tectonics, in others likely because exploration of the Earth's surface is incomplete, or because no actual crater was formed because the impacting object exploded as a cosmic air burst. Typically the ages are already known and the diameters can be estimated.

Parent crater ofExpected crater diameterAgeNotes
Pica glass Unknown12 ka [357]
Libyan desert glass Unknown29 Ma [358] [359] [360] [361]
Dakhleh glass0.4 km150 ka [362] [363]
Argentinian impact glasses Unknown6, 114, and 445 ka;

5.3 and 9.2 Ma

[364] [365] [366]
Australasian tektites 32–114 km780 ka [344]
Central American tektites 14 km820 ka [367] [368] [369]
Skye ejecta deposits Unknown60 Ma [370]
Stac Fada Member 40 km1.2 Ga [371] [372] [373]
Barberton Greenstone Belt spherules 500 km3.2 Ga [374] [375]
Marble Bar impact spherules "hundreds of kilometers"3.4 Ga [376]
Kaveri Crater 120 km800 to 550 million years ago [377]

Mistaken identity

Some geological processes can result in circular or near-circular features that may be mistaken for impact craters. Some examples are calderas, maars, sinkholes, glacial cirques, igneous intrusions, ring dikes, salt domes, geologic domes, ventifacts, tuff rings, forest rings , and others. Conversely, an impact crater may originally be thought as one of these geological features, like Meteor Crater (as a maar) or Upheaval Dome (as a salt dome).

The presence of shock metamorphism and shatter cones are important criteria in favor of an impact interpretation, though massive landslides (such as the Köfels landslide of 7800 BC which was once thought to be impact-related) may produce shock-like fused rocks called "frictionite". [378]

See also

Notes and references

Notes

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Shown as "proven" by Mikheeva (2017), [18] [ unreliable source? ] not "confirmed" by EID (2018). [19]

Related Research Articles

<span class="mw-page-title-main">Impact event</span> Collision of two astronomical objects

An impact event is a collision between astronomical objects causing measurable effects. Impact events have been found to regularly occur in planetary systems, though the most frequent involve asteroids, comets or meteoroids and have minimal effect. When large objects impact terrestrial planets such as the Earth, there can be significant physical and biospheric consequences, as the impacting body is usually traveling at several kilometres a second, though atmospheres mitigate many surface impacts through atmospheric entry. Impact craters and structures are dominant landforms on many of the Solar System's solid objects and present the strongest empirical evidence for their frequency and scale.

<span class="mw-page-title-main">Martian meteorite</span> Meteorite made of rock originating from Mars

A Martian meteorite is a rock that formed on Mars, was ejected from the planet by an impact event, and traversed interplanetary space before landing on Earth as a meteorite. As of September 2020, 277 meteorites had been classified as Martian, less than half a percent of the 72,000 meteorites that have been classified. The largest complete, uncut Martian meteorite, Taoudenni 002, was recovered in Mali in early 2021. It weighs 14.5 kilograms and is on display at the Maine Mineral and Gem Museum.

<span class="mw-page-title-main">Tektite</span> Gravel-sized glass beads formed from meteorite impacts

Tektites are gravel-sized bodies composed of black, green, brown or grey natural glass formed from terrestrial debris ejected during meteorite impacts. The term was coined by Austrian geologist Franz Eduard Suess (1867–1941), son of Eduard Suess. They generally range in size from millimetres to centimetres. Millimetre-scale tektites are known as microtektites.

<span class="mw-page-title-main">Aorounga crater</span> Prehistoric impact crater

Aorounga is an eroded meteorite impact crater in Chad, Africa. The exposed remnant of the crater is 12.6 km (7.8 mi) in diameter and its age is estimated to be less than 345 million years.

<span class="mw-page-title-main">Gweni-Fada crater</span> Meteorite crater in the Ennedi Plateau, Chad, Africa

Gweni-Fada is a meteorite crater in the Ennedi Plateau, Chad.

<span class="mw-page-title-main">Popigai impact structure</span> Impact crater in Siberia, Russia

The Popigai impact structure is the eroded remnant of an impact crater in northern Siberia, Russia. It is tied with the Manicouagan structure as the fourth largest verified impact structure on Earth. A large bolide impact created the 100-kilometre (62 mi) diameter crater approximately 35 million years ago during the late Eocene epoch. It might be linked to the Eocene–Oligocene extinction event.

<span class="mw-page-title-main">Rochechouart impact structure</span> Asteroid impact structure in France

Rochechouart impact structure or Rochechouart astrobleme is an impact structure in France. Erosion has over the millions of years mostly destroyed its impact crater, the initial surface expression of the asteroid impact leaving highly deformed bedrock and fragments of the crater's floor as evidence of it.

<span class="mw-page-title-main">Roter Kamm crater</span> Meteorite crater in the Namibian section of the Namib Desert

Roter Kamm is a meteorite crater, located in the Sperrgebiet, within the Namibian section of the Namib Desert, approximately 80 kilometres (50 mi) north of Oranjemund and 12 kilometres (7.5 mi) southwest of Aurus Mountain in the ǁKaras Region. The crater is 2.5 kilometres (1.6 mi) in diameter and is 130 metres (430 ft) deep. The age is estimated at 4.81 ± 0.5 Ma, placing it in the Pliocene. The crater is exposed at the surface, but its original floor is covered by sand deposits at least 100 metres (330 ft) thick.

<span class="mw-page-title-main">Vredefort impact structure</span> Largest verified impact structure on Earth, about 2 billion years old

The Vredefort impact structure is the largest verified impact structure on Earth. The crater, which has since been eroded away, has been estimated at 170–300 kilometres (110–190 mi) across when it was formed. The remaining structure, comprising the deformed underlying bedrock, is located in present-day Free State province of South Africa. It is named after the town of Vredefort, which is near its centre. The structure's central uplift is known as the Vredefort Dome. The impact structure was formed during the Paleoproterozoic Era, 2.023 billion years ago. It is the second-oldest known impact structure on Earth, after Yarrabubba.

<span class="mw-page-title-main">Woodleigh impact structure</span> Impact structure in Western Australia

Woodleigh is a large meteorite impact structure (astrobleme) in Western Australia, centred on Woodleigh Station east of Shark Bay, Gascoyne region. A team of four scientists at the Geological Survey of Western Australia and the Australian National University, led by Arthur J. Mory, announced the discovery in the 15 April 2000 issue of Earth and Planetary Science Letters.

<span class="mw-page-title-main">HED meteorite</span> Group of achondrite meteorites

HED meteorites are a clan (subgroup) of achondrite meteorites. HED stands for "howardite–eucrite–diogenite". These achondrites came from a differentiated parent body and experienced extensive igneous processing not much different from the magmatic rocks found on Earth and for this reason they closely resemble terrestrial igneous rocks.

<span class="mw-page-title-main">Libyan desert glass</span> Desert glass found in Libya and Egypt

Libyan desert glass or Great Sand Sea glass is an impactite, made mostly of lechatelierite, found in areas in the eastern Sahara, in the deserts of eastern Libya and western Egypt. Fragments of desert glass can be found over areas of tens of square kilometers.

<span class="mw-page-title-main">Serra da Cangalha</span> Impact crater in Brazil

Serra da Cangalha is an impact crater in the State of Tocantins, near the border of Maranhão State, in north/northeastern Brazil. The crater is between 12 and 13 kilometres in diameter, making it the second-largest known crater in Brazil. Its age is estimated to be about 220 million years. The name means Pack-Saddle Mountains in Portuguese.

<span class="mw-page-title-main">Santa Fe impact structure</span> Impact crater in New Mexico

The Santa Fe impact structure is an eroded remnant of a bolide impact crater in the Sangre de Cristo Mountains northeast of Santa Fe, New Mexico. The discovery was made in 2005 by a geologist who noticed shatter cones in the rocks in a decades-old road cut on New Mexico State Road 475 between Santa Fe and Hyde Memorial State Park. Shatter cones are a definitive indicator that the rocks had been exposed to a shock of pressures only possible in a meteor impact or a nuclear explosion.

<span class="mw-page-title-main">Ramgarh crater</span> Impact crater in the country of India

Ramgarh crater, also known as Ramgarh structure, Ramgarh Dome and Ramgarh astrobleme, is a meteor impact crater of 3.5 kilometres (2.2 mi) diameter in Kota plateau of Vindhya Range located adjacent to Ramgarh village in Mangrol tehsil of Baran district in Rajasthan state of India. When formally accepted as the third crater in India, its diameter size would be between the two already confirmed craters in India - Dhala in Madhya Pradesh with 14 km diameter and Lonar in Buldhana district of Maharashtra with 1.8 km diameter.

Dhala crater is an impact structure formed by an asteroid impact. It is situated near Bhonti village in Pichhore block of Shivpuri district of Madhya Pradesh state in India. It is the largest impact structure in India, and between the Mediterranean and Southeast Asia. The diameter of the structure is estimated at 3 kilometres (1.9 mi), while other sources estimate its diameter to be 11 km diameter. It is the second such structure found in India, after Lonar lake.

<span class="mw-page-title-main">Late Heavy Bombardment</span> Hypothesized astronomical event

The Late Heavy Bombardment (LHB), or lunar cataclysm, is a hypothesized astronomical event thought to have occurred approximately 4.1 to 3.8 billion years (Ga) ago, at a time corresponding to the Neohadean and Eoarchean eras on Earth. According to the hypothesis, during this interval, a disproportionately large number of asteroids and comets collided into the terrestrial planets and their natural satellites in the inner Solar System, including Mercury, Venus, Earth and Mars. These came from both post-accretion and planetary instability-driven populations of impactors. Although it gained widespread credence, definitive evidence remained elusive. However, recent re-appraisal of the cosmo-chemical constraints suggest there was no late spike in the bombardment rate.

As of June 2018, 12 confirmed impact structures have been found in Finland. They are listed below, sorted by original diameter.

References

  1. updated, Daisy Dobrijevic last (2021-10-29). "10 Earth impact craters you must see". Space.com. Retrieved 2023-02-05.
  2. 1 2 Haines, P. W. (2005). "Impact cratering and distal ejecta: The Australian record". Australian Journal of Earth Sciences. 52 (4–5): 481–507. Bibcode:2005AuJES..52..481H. doi:10.1080/08120090500170351. S2CID   128705406.
  3. 1 2 3 4 Reimold, Wolf Uwe; Koeberl, Christian (2014). "Impact structures in Africa: A review". Journal of African Earth Sciences. 93: 57–175. Bibcode:2014JAfES..93...57R. doi:10.1016/j.jafrearsci.2014.01.008. PMC   4802546 . PMID   27065753.
  4. Acevedo, R.; Rocca, M. C.; Ponce, J.; Stinco, S. (2015). Impact Craters in South America. SpringerBriefs in Earth Sciences. Springer. ISBN   978-3-319-13092-7.
  5. Chabou, M. C. (2016). "An updated inventory of meteorite impact structures in the Arab world". 1st ArabGU International Conference, Feb 2016, Algeria.
  6. Crósta, Alvaro P.; Reimold, Wolf Uwe (2016). "Impact Craters in South America, by Acevedo R. D., Rocca M. C. L., Ponce J. F., and Stinco S. G. Heidelberg: Springer, 2015. 104 p. SpringerBriefs in Earth Sciences: South America and the Southern Hemisphere. ISBN 978-3-319-13092-7". Meteoritics & Planetary Science. 51 (5): 996–999. doi: 10.1111/maps.12632 .
  7. Rampino, M.R; Volk, T. (1996). "Multiple impact event in the Paleozoic: Collision with a string of comets or asteroids?" (PDF). Geophysical Research Letters . 23 (1): 49–52. Bibcode:1996GeoRL..23...49R. doi:10.1029/95GL03605 . Retrieved 2019-04-06.
  8. "Acraman". www.passc.net. Retrieved 2023-02-05.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 Expert Database on Earth Impact Structures (EDEIS), Accessed May 2016
  10. Murgab
  11. "Meteorite crater site of Ak-Bura". Archived from the original on 2016-06-05. Retrieved 2016-05-12.
  12. Bacharev, A (1952), The Murgab meteorite crater. Astron. Tsirk., No 122, pp. 8–10
  13. Al Madafi
  14. Garvin, James B.; Blodget, Herbert W. (1986). "Suspected Impact Crater Near Al Madafi, Saudi Arabia". Meteoritics. 21: 366. Bibcode:1986Metic..21..366G.
  15. Roger Weller. Al Madafi crater Archived 2016-09-17 at the Wayback Machine
  16. Warme, J.E.; Sandberg, C.A. (1996). "Alamo megabreccia: record of a Late Devonian impact in southern Nevada" (PDF). GSA Today. 6 (1): 1–7.
  17. Morrow, JR; Sandberg, CA; Malkowski, K; Joachimski, MM (2009). "Carbon isotope chemostratigraphy and precise dating of middle Frasnian (lower Upper Devonian) Alamo Breccia, Nevada, USA". Palaeogeography, Palaeoclimatology, Palaeoecology. 282 (1–4): 105–118. Bibcode:2009PPP...282..105M. doi:10.1016/j.palaeo.2009.08.016.
  18. Mikheeva, 2017.[ full citation needed ]
  19. List of confirmed impact craters by name - Earth Impact Database
  20. Anefis
  21. 1 2 3 A. Rossi (2002). Seven Possible New Impact Structures In Western Africa Detected On Aster Imagery, Lunar and Planetary Science XXXIII
  22. Roger Weller Anefis crater Archived 2016-09-17 at the Wayback Machine
  23. Aorounga
  24. Ocampo, A. C.; Pope, K. O. (1996). "Shuttle Imaging Radar (SIR-C) Images Reveal Multiple Impact Craters at Aorounga, Northern Chad". Lunar and Planetary Science. 27: 977. Bibcode:1996LPI....27..977O.
  25. 1 2 3 S. Master & W. Reimold (2000). The impact cratering record of Africa: An updated inventory of proven, probable, possible, and discredited impact structures on the African continent, Catastrophic Events Conference 2000.
  26. Arganaty
  27. Zeilik, B. S. (1987). "The Arganaty cosmogenic crater in southern Kazakhstan and the ring structures associated with it". Akademiia Nauk SSSR, Doklady. 297 (4): 925–928. Bibcode:1987DoSSR.297..925Z.
  28. Barash, M. (2012). "Mass Extinction of Ocean Organisms at the Paleozoic–Mesozoic Boundary: Effects and Causes". Oceanology. 52 (2): 238–248. Bibcode:2012Ocgy...52..238B. doi:10.1134/s000143701201002x. S2CID   129822484.
  29. Unnamed ("Arlit")
  30. David Rajmon (2010). Impact Field Studies Group
  31. Marc Fokker (2008). Astroforum Netherlands Archived 2015-04-02 at the Wayback Machine
  32. "Avak". www.passc.net. Retrieved 2023-02-05.
  33. Azuara
  34. Bajada del Diablo
  35. R. D. Acevedo, J. Rabassa, M. J. Orgeira, et al. (2010) Bajada Del Diablo Impact Crater Strewn-Field, Patagonia, Argentina: The Largest Crater Field In The World? 73rd Annual Meteoritical Society Meeting
  36. Acevedo, R.D.; Rabassa, J.; Ponce, J.F.; Martínez, O.; Orgeira, M.J.; Prezzi, C.; Corbella, H.; González-Guillot, M.; Rocca, M.; Subías, I.; Vásquez, C. (2012). "The Bajada del Diablo astrobleme-strewn field, central Patagonia Argentina: Extending the exploration to surrounding areas". Geomorphology. 169–170: 151–164. Bibcode:2012Geomo.169..151A. doi:10.1016/j.geomorph.2012.04.020.
  37. Bajo Hondo
  38. M. C. Rocca (2005). BAJO HONDO, CHUBUT, PATAGONIA, ARGENTINA: A NEW METEORITE IMPACT CRATER IN BASALT?, 68th Annual Meteoritical Society Meeting
  39. Bangui
  40. Girdler, R.; Taylor, P.; Frawley, J. (1992). "A possible impact origin for the Bangui magnetic anomaly (Central Africa)". Tectonophysics. 212 (1): 45–58. Bibcode:1992Tectp.212...45G. doi:10.1016/0040-1951(92)90139-w.
  41. "Barringer Meteor Crater and Its Environmental Effects". www.lpi.usra.edu. Retrieved 2023-02-05.
  42. Bateke
  43. S. Master, G.R.J. Cooper and K. Klajnik (2013). The Bateke Plateau Structure – A New Possible 7 Km Diameter Quaternary Meteorite Impact Structure In Gabon: A Remote Sensing Study, 13th SAGA Biennial Conference & Exhibition
  44. Bedout
  45. Becker, L.; Poreda, R. J.; Basu, A. R.; Pope, K. O.; Harrison, T. M.; Nicholson, C.; Iasky, R. (2004). "Bedout: A Possible End-Permian Impact Crater Offshore of Northwestern Australia". Science. 304 (5676): 1469–1476. Bibcode:2004Sci...304.1469B. doi:10.1126/science.1093925. PMID   15143216. S2CID   17927307.
  46. Bee Bluff
  47. R. A. Graham (2005) Reinvestigation of the Bee Bluff Structure South of Uvalde, Texas, 'The Uvalde Crater'. Lunar and Planetary Science XXXVI (2005)
  48. Bee Bluff
  49. Björkö
  50. H. Henkel, A. Bäckström, B. Bergman, O. Stephansson, and M. Lindström (2005). Geothermal Energy from Impact Craters? The Björkö Study, Proceedings World Geothermal Congress 2005
  51. Bloody Creek
  52. Bohemia
  53. Papagiannis, Michael D. (1989). "Photographs from geostationary satellites indicate the possible existence of a huge 300 KM impact crater in the Bohemian region of Czechoslovakia". Meteoritics. 24: 313. Bibcode:1989Metic..24R.313P.
  54. Rajlich, P. (1992). "Bohemian Circular Structure, Czechoslovakia: Search for the Impact Evidence". Abstracts of Papers Presented to the International Conference on Large Meteorite Impacts and Planetary Evolution. Held August 31 – September 2, 1992, in Sudbury, Ontario, Canada. Vol. 790. Lunar and Planetary Institute. p. 57. Bibcode:1992LPICo.790...57R. LPI Contribution 790.{{cite book}}: |journal= ignored (help)
  55. Bow City
  56. Bowers
  57. 1 2 L. P. Hrjanina (Khryanina), 2006. "Once again about Kainozoic meteorite structures in the Ross Sea, Antarctica" (PDF).{{cite web}}: CS1 maint: numeric names: authors list (link)
  58. Gerard-Little, P.; Abbott, D.; Breger, D.; Burckle, L (2006). "Evidence for a Possible Late Pliocene Impact in the Ross Sea, Antarctica".
  59. Paul Rincon (2006). Space impact clue in Antarctica, BBC News
  60. Heinrich, P.V. (2003) Possible Meteorite Impact Crater in St. Helena Parish, Louisiana Search and Discovery Article. no. 50006. American Association of Petroleum Geologist, Tulsa, Oklahoma. Retrieved March 27, 2011.
  61. King, D.T., Jr., and Petruny, L.W.. 2007. Impact structures and craters of the U.S. Gulf coastal states.Gulf Coast Association of Geological Societies Transactions. v. 57, p. 409-425.
  62. Matherne, C., Karunatillake, S., Hood, D.R., Duxbury, J., Herr, A., Heinrich, P., Horn, M., Webb, A. and Sivils, A., 2020. Planar Deformation Features Found Within a Possible Impact Structure, the Brushy Creek Feature, St. Helena Parish, LA.Lunar and Planetary Science Conference No. 2326, p. 2361.
  63. Herr, Andrew. "Investigating the Brushy Creek Impact Crater" (PDF). Houston lunar and planetary science conference.
  64. Quek, Long Xiang; Ghani, A. A; Badruldin, Muhammad Hafifi; Mokhtar, Saidin; Harith, Zuhar Zahir; Roselee, M. Hatta (2015). "Platinum Group Elements in Proximal Impactites of the Bukit Bunuh Impact Structure, Malaysia". Current Science. 109 (12). doi:10.18520/v109/i12/2303-2308 (inactive 2024-07-09).{{cite journal}}: CS1 maint: DOI inactive as of July 2024 (link)
  65. Jinmin, Mark; Saad, Rosli; Nordiana, M.M.; Mokhtar, Saidin (2017). "Trilogy possible meteorite impact crater at Bukit Bunuh, Malaysia using 2-D electrical resistivity imaging". AIP Conference Proceedings. 1861 (1): 030012. Bibcode:2017AIPC.1861c0012J. doi:10.1063/1.4990899.
  66. Burckle
  67. 1 2 Abbott, Dallas H., Martos, Suzanne, Elkinton, Hannah, Bryant, Edward F., Gusiakov, Viacheslav, and Breger, Dee (2006). Impact craters as sources of megatsunami generated chevron dunes. 2006 Philadelphia Annual Meeting (22–25 October 2006)
  68. Masse W. B., Bryant E., Gusiakov V., Abbott D., Rambolamanana G., Raza H., Courty M.A. (2006). Holocene Indian ocean cosmic impacts – the megatsunami chevron evidence from southern Madagascar. AGU, San Francisco
  69. Catalina
  70. Legg, Mark R.; Nicholson, Craig; Goldfinger, Chris; Milstein, Randall; Kamerling, Marc (2004). "Large enigmatic crater structures offshore southern California". Geophys. J. Int. 159 (2): 803–815. Bibcode:2004GeoJI.159..803L. doi: 10.1111/j.1365-246x.2004.02424.x .
  71. Brandsma Dan, Lund Steve P.; Henyey Thomas, L. (1989). "Paleomagnetism of Late Quaternary marine sediments from Santa Catalina basin, California continental borderland ". J. Geophys. Res. B. 94 (1): 547–564. Bibcode:1989JGR....94..547B. doi:10.1029/JB094iB01p00547.
  72. Jarau
  73. 1 2 3 4 A. Crósta, R. Romano (2004). Brazilian Impact Craters: A Review, 35th Lunar and Planetary Science Conference
  74. 1 2 3 4 A. Crósta, M. Vasconcelos (2013). Update On The Current Knowledge Of The Brazilian Impact Craters, 44th Lunar and Planetary Science Conference
  75. Charity Shoal
  76. Holcombe, Troy L.; Warren, John S.; Reid, David F.; Virden, William T.; Divins, David L. (2001). "Small Rimmed Depression in Lake Ontario: An Impact Crater?". Journal of Great Lakes Research. 27 (4): 510–517. Bibcode:2001JGLR...27..510H. doi:10.1016/S0380-1330(01)70664-8.
  77. Holcombe, Troy L.; Youngblut, Scott; Slowey, Niall (2013). "Geological structure of Charity Shoal crater, Lake Ontario, revealed by multibeam bathymetry". Geo-Marine Letters. 33 (4): 245–252. Bibcode:2013GML....33..245H. doi:10.1007/s00367-013-0322-6. S2CID   129846298.
  78. Suttak, P.A., 2013, High-resolution lake-based magnetic mapping and modeling of basement structures, with examples from Küçükçekmece Lagoon, Turkey and Charity Shoal, Lake Ontario. unpublished MS thesis, School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario. 113 pp.
  79. Assis Fernandes V., Hopp J., Schwarz W.H., Fritz J.P., and Trieloff M. (2019) 40Ar-39Ar step heating of North American tektites and of impact melt rock samples from the Chesapeake Bay impact structure. Geochimica et Cosmochimica Acta 255, 289-308. https://doi.org/10.1016/j.gca.2019.03.004
  80. "Clearwater East". www.passc.net. Retrieved 2023-02-06.
  81. Corossol
  82. Higgins, M.D., P. Lajeunesse, G. St-Onge, R. Sanfacon, and M. Duchesne, 2013, Impact Breccia Clast from the Corossol Crater, Canada. 76th Annual Meteoritical Society Meeting. Meteoritics and Planetary Science Supplement. id.5190.
  83. Lajeunesse, Patrick; St-Onge, Guillaume; Locat, Jacques; Duchesne, Mathieu J.; Higgins, Michael D.; Sanfaçon, Richard; Ortiz, Joseph (2013). "The Corossol structure: A possible impact crater on the seafloor of the northwestern Gulf of St. Lawrence, Eastern Canada". Meteoritics & Planetary Science. 48 (12): 2542–2558. Bibcode:2013M&PS...48.2542L. doi:10.1111/maps.12224. S2CID   140639070.
  84. Lajeunesse, P., Duchesne, M.J., St-Onge, G., Locat, J., Higgins, M., Sanfaçon, R. and Ortiz, J., 2016. The Corossol Structure: a glaciated crater of possible impact origin in the northwestern Gulf of St Lawrence, eastern Canada. In Dowdeswell, J. A., Canals, M., Jakobsson, M., Todd, B. J., Dowdeswell, E. K. & Hogan, K. A. (eds) 2016. Atlas of Submarine Glacial Landforms: Modern, Quaternary and Ancient. Geological Society, London, Memoirs, 46(1), pp.127–128.
  85. Darwin
  86. Decorah
  87. Briggs, D.E.; Liu, H.P.; McKay, R.M.; Witzke, B.J. (2018). "The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater". Journal of the Geological Society. 175 (6): 865–874. Bibcode:2018JGSoc.175..865B. doi: 10.1144/jgs2018-101 . S2CID   85450625.
  88. French, B.M., McKay, R.M., Liu, H.P., Briggs, D.E. and Witzke, B.J., 2018. "The Decorah structure, northeastern Iowa: geology and evidence for formation by meteorite impact." Geological Society of America Bulletin, 130(11–12), pp. 2062–2086.
  89. "Potential asteroid impact identified in western Queensland". Geoscience Australia. 2015-03-17. Retrieved 26 June 2016.
  90. Glikson, A.; Korsch, R.J.; Milligan, P. (2016). "The Diamantina River ring feature, Winton region, western Queensland". Australian Journal of Earth Sciences . 63 (5): 1–11. Bibcode:2016AuJES..63..653G. doi:10.1080/08120099.2016.1220978. S2CID   132501378 . Retrieved 2019-04-06.
  91. Dumas
  92. 1 2 3 Gubins, A. & Strangway, D. (1978). "Magnetic Fields Associated with a Probable Late Cretaceous Astrobleme at Dumas, Saskatchewan", Lunar and Planetary Science IX, pp. 433–435
  93. Duolun
  94. Wu Siben (1989). "Geologic feature of the Duolun impact crater". Lunar and Planetary Science Conference. 20: 1219. Bibcode:1989LPI....20.1219W.
  95. El-Baz
  96. El-Baz, F (1981). "Circular Feature Among Dunes of the Great Sand Sea, Egypt". Science. 213 (4506): 439–440. Bibcode:1981Sci...213..439E. doi:10.1126/science.213.4506.439. PMID   17760189.
  97. Eltanin
  98. Shuvalov V.V. (2006). Numerical modeling of the Eltanin impact: determination of projectile size and tsunami amplitude. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, pp. 201-202
  99. Weiss, Robert; Lynett, Patrick; Wünnemann, Kai (2015). "The Eltanin impact and its tsunami along the coast of South America: Insights for potential deposits". Earth and Planetary Science Letters. 409: 175–181. Bibcode:2015E&PSL.409..175W. doi:10.1016/j.epsl.2014.10.050.
  100. Faya Basin
  101. M. Schmieder and E. Buchner (2010). The Faya Basin (Chad) revisited – structural insights from central peak morphology and potential Martian analogs, Nördlingen Ries Crater Workshop (2010).
  102. Rocca, Maximiliano C. L.; Presser, Jaime Leonardo Báez; (2015) "A possible new very large impact structure in Falkland Islands", Historia Natural, Tercera Series, Volumen 5(2)
  103. Rocca, Maximiliano C. L.; Rampino, Michael R.; Presser, Jaime Leonardo Báez (2017). "Geophysical evidence for a large impact structure on the Falkland Plateau". Terra Nova. 29 (4): 233–37. Bibcode:2017TeNov..29..233R. doi:10.1111/ter.12269. S2CID   134484465.
  104. Reimold, W.U.; Crósta, A.P.; Koeberl, C.; Hauser, N. (2017). "Comment on "Geophysical evidence for a large impact structure on the Falkland (Malvinas) Plateau"". Terra Nova. 29 (6): 409–410. Bibcode:2017TeNov..29..233R. doi:10.1111/ter.12284. S2CID   134482395.
  105. McCarthy, D.; Aldiss, Michael D.; Arsenikos, S.; Stone, P.; Richards, P. (2017). "Comment on "Geophysical evidence for a large impact structure on the Falkland (Malvinas) Plateau"" (PDF). Terra Nova. 29 (6): 411–415. Bibcode:2017TeNov..29..233R. doi:10.1111/ter.12285. S2CID   133781924.
  106. Acevedo, R. D.; Rocca, M. C. L.; Ponce, J.; Stinco, S. G. (2015). Impact Craters in South America. Springer. p. 23. ISBN   978-3-319-13093-4.
  107. Fried Egg
  108. Amos, J (2009) 'Fried Egg' may be impact crater BBC News.
  109. Garet El Lefet
  110. Roger Weller. Garet El Lefet crater Archived 2016-09-17 at the Wayback Machine
  111. 1 2 Classen, J. (1977). "Catalogue of 230 Certain, Probable, Possible, and Doubtful Impact Structures". Meteoritics. 12 (1): 61–78. Bibcode:1977Metic..12...61C. doi:10.1111/j.1945-5100.1977.tb00332.x.
  112. Tornabene, L.L., 2001 The Gatun Structure: A geological assessment of a newly recognized impact structure near Lake Gatun in the Republic de Panama. Master of Science thesis. University of South Florida, Tampa, Florida, USA.
  113. Heckadon-Moreno, S, 2013. Livio Tornabene y el meteorito de Gatun. Epocas. 28 (11):10–11.
  114. LeBlanc, J., 2021. Stratigraphic Lexicon: The Onshore Cenozoic Sedimentary Formations of The Republic of Panama. Biosis: Biological Systems, 2(1), pp.1-173.
  115. General San Martín
  116. 1 2 Harris, R. S.; Schultz, P. H.; Zárate, M. A. (2007) La Dulce Crater: Evidence For A 2.8 Km Impact Structure In The Eastern Pampas Of Argentina, 38th Lunar and Planetary Science Conference
  117. R. D. Acevedo, M. Rocca, J. Rabassa and J. F. Ponce Meteorite Impact Craters In South America: A Brief Review. 74th Annual Meteoritical Society Meeting (2011)
  118. Gnargoo
  119. Iasky, R. P.; Glikson, A. Y. (2005). "Gnargoo: A possible 75 km-diameter post-Early Permian – pre-Cretaceous buried impact structure, Carnarvon Basin, Western Australia". Australian Journal of Earth Sciences. 52 (4–5): 575–586. Bibcode:2005AuJES..52..575I. doi:10.1080/08120090500170377. S2CID   128814897.
  120. Monteiro, J. F. (1991). "The Guarda Circular Structure: A Possible Complex Impact Crater". Abstracts of the Lunar and Planetary Science Conference. 22: 915–916. Bibcode:1991LPI....22..915M.
  121. Van Zalinge, M. E. (2012). The Guarda structure, NE-Portugal: a meteorite impact crater or not? (Thesis). Utrecht University, Utrecht. p. 83.
  122. Van Zalinge, M. E.; Hamers, M. F.; Drury, M. R. (2012). "The Guarda structure (Portugal): impact structure or not? Microstructural studies of quartz, zircon and monazite". Meteoritics and Planetary Science Supplement. 75: 5045–5046.
  123. Hartney
  124. Anderson, C. (1980). "A Seismic Reflection Study of a Probable Astrobleme near Hartney, Manitoba" (PDF). Canadian Journal of Exploration Geophysics. 16: 7.
  125. Hiawatha
  126. Kjær, Kurt H. (2018). "A large impact crater beneath Hiawatha Glacier in northwest Greenland". Science Advances. 4 (11): eaar8173. Bibcode:2018SciA....4.8173K. doi:10.1126/sciadv.aar8173. PMC   6235527 . PMID   30443592.
  127. 1 2 Kenny, Gavin G.; Hyde, William R.; Storey, Michael; Garde, Adam A.; Whitehouse, Martin J.; Beck, Pierre; Johansson, Leif; Søndergaard, Anne Sofie; Bjørk, Anders A.; MacGregor, Joseph A.; Khan, Shfaqat A.; Mouginot, Jérémie; Johnson, Brandon C.; Silber, Elizabeth A.; Wielandt, Daniel K. P.; Kjær, Kurt H.; Larsen, Nicolaj K. (11 March 2022). "A Late Paleocene age for Greenland's Hiawatha impact structure". Science Advances. 8 (10): eabm2434. Bibcode:2022SciA....8M2434K. doi:10.1126/sciadv.abm2434. PMC   8906741 . PMID   35263140.
  128. Hico
  129. J. Glidewell (2009). SEISMIC DATA THROUGH THE HICO STRUCTURE: A POSSIBLE IMPACT FEATURE IN NORTHCENTRAL TEXAS, 40th Lunar and Planetary Science Conference
  130. Wiberg Leanne (1982). The Hico Structure: a possible impact structure in north-central Texas, USA. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, Pt 2., Houston, Tex., pp. 863–864
  131. Hotchkiss
  132. M. Mazur and R. Stewart (1998). Interpreting the Hotchkiss structure: A possible meteorite impact feature in northwestern Alberta, Consortium for Research in Elastic Wave Exploration Seismology (CREWES).
  133. Howell
  134. B. Deane, P. Lee, K. Milam, J. Evenick, and R.Zawislak (2004). THE HOWELL STRUCTURE, LINCOLN COUNTY, TENNESSEE: A REVIEW OF PAST AND CURRENT RESEARCH, Lunar and Planetary Science XXXV
  135. Milam, K. A., Henderson, T., Deane, B. (2014). An Assessment Of Shock Metamorphism In Breccias From The Howell Structure, Lincoln County, Tennessee, US, Abstracts of the 2014 GSA Annual Meeting, Geological Society of America
  136. Ibn-Batutah
  137. Ghoneim, Eman M. (2009). "Ibn-Batutah: A possible simple impact structure in southeastern Libya, a remote sensing study". Geomorphology. 103 (3): 341–350. Bibcode:2009Geomo.103..341G. doi:10.1016/j.geomorph.2008.07.005.
  138. Osinski, Gordon R.; Grieve, Richard A. F.; Ferrière, Ludovic; Losiak, Ania; Pickersgill, Annemarie; Cavosie, Aaron J.; Hibbard, Shannon M.; Hill, Patrick; Bermudez, Juan Jaimes; Marion, Cassandra L.; Newman, Jennifer D. (2022-07-21). "Impact Earth: A review of the terrestrial impact record". Earth-Science Reviews. 232: 104112. Bibcode:2022ESRv..23204112O. doi:10.1016/j.earscirev.2022.104112. ISSN   0012-8252. S2CID   250965097.
  139. Losiak, A.; Jõeleht, A.; Plado, J.; Szyszka, M.; Kirsimäe, K.; Wild, E. M.; Steier, P.; Belcher, C. M.; Jazwa, A. M.; Helde, R. (February 2020). "Determining the age and possibility for an extraterrestrial impact formation mechanism of the Ilumetsa structures (Estonia)". Meteoritics & Planetary Science. 55 (2): 274–293. Bibcode:2020M&PS...55..274L. doi: 10.1111/maps.13431 . ISSN   1086-9379. S2CID   213799334.
  140. Ishim
  141. 1 2 Frank Dachille (1976). (1976). "Frequency of the formation of large terrestrial impact craters". Meteoritics. 11: 270. Bibcode:1976Metic..11..270D.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  142. 1 2 Zeylik B. S.; Seytmuratova E. Yu, 1974: A meteorite-impact structure in central Kazakhstan and its magmatic-ore controlling role. Doklady Akademii Nauk SSSR: 1, pp. 167–170
  143. Iturralde
  144. Jackpine Creek
  145. 1 2 S. Goussev, R. Charters, J. Peirce and W. Glenn (2002). Jackpine Creek Magnetic Anomaly: A Case of the HRAM Prospect Scale Interpretation Archived 2016-06-11 at the Wayback Machine . CSEG: The Canadian Society of Exploration Geophysicists
  146. Jalapasquillo
  147. Maupome, L. (1974). "Possible Meteorite Crater in Mexico". Revista Mexicana de Astronomía y Astrofísica. 1: 81–. Bibcode:1974RMxAA...1...81M.
  148. Jebel Hadid
  149. Schmieder, Martin; Buchner, Elmar; Le Heron, Daniel Paul (2009). "The Jebel Hadid structure (Al Kufrah Basin, SE Libya) – A possible impact structure and potential hydrocarbon trap?". Marine and Petroleum Geology. 26 (3): 310–318. Bibcode:2009MarPG..26..310S. doi:10.1016/j.marpetgeo.2008.04.003.
  150. Jeptha Knob
  151. Snows Island
  152. Talwani, Pradeep; Wildermuth, Eric; Parkinson, Chris D. (2003). "An impact crater in northeast South Carolina inferred from potential field data". Geophysical Research Letters. 30 (7): 1366. Bibcode:2003GeoRL..30.1366T. doi: 10.1029/2003GL017051 .
  153. Jwaneng South
  154. Sharad Master, Brad Pitts and Marek Wendorff (2009). Jwaneng South Structure, Botswana: a New 1.3 km Diameter Buried Cenozoic Impact Crater Discovered by Airship-mounted Gravity Gradometer Archived 2016-06-29 at the Wayback Machine , 11th SAGA Biennial Technical Meeting and Exhibition
  155. Ust-Kara
  156. C. Koeberl (1990). The Kara/Ust-Kara twin impact structure. Geological Society of America, special paper.
  157. Kebira
  158. Reimold, W.U.; Ch, Koeberl (2014). "Impact structures in Africa: A review". J. Afr. Earth Sci. 93: 57–175. Bibcode:2014JAfES..93...57R. doi:10.1016/j.jafrearsci.2014.01.008. PMC   4802546 . PMID   27065753.
  159. Kilmichael
  160. M.S. Huber, D.T. King, Jr., L.W. Petruny, and C. Koeberl (2013). REVISITING KILMICHAEL (MISSISSIPPI), A POSSIBLE IMPACT STRUCTURE, 44th Lunar and Planetary Science Conference
  161. Robertson P.B., Butler M.D. (1982). New evidence for the impact origin of Kilmichael Mississippi. Lunar and Planet. Sci. 13: Abstr. Pap. 13th Lunar and Planet. Sci. Conf., Houston, Tex., March 15–19, 1982. Pt 2, Houston, Tex., pp. 653–654
  162. King D.T. Petruny Jr. and L.W. (2002). COSMIC IMPACT IN THE COASTAL PLAIN OF MISSISSIPPI? THE RIDDLE THE OF THE KILMICHAEL STRUCTURE 65th Annual Meteoritical Society Meeting
  163. Krk
  164. T. Marjanac, A. Tomša, Lj. Marjanac, M. Calogovic & S. Fazinic (2015). Krk impact structure ejecta breccia and melt rocks on the islands of Krk and Rab, Croatian Adriatic: A clue on the impact target lithology, Bridging the Gap III (2015)
  165. Kurai Basin
  166. S. A. Vishnevsky (2007). The Kurai Basin, Altai mountains (Russia): First evidences of impact origin, Lunar and Planetary Science XXXVIII (2007)
  167. La Dulce
  168. Labynkyr
  169. Dietz, Robert S.; McHone, John (1974). "Impact structures from ERTS imagery". Meteoritics. 9: 329. Bibcode:1974Metic...9..329D.
  170. Roger Weller. Labynkyr ring Archived 2016-09-17 at the Wayback Machine
  171. Lac Iro
  172. James B. Garvin (1986). POSSIBLE IMPACT STRUCTURES IN CENTRAL AFRICA
  173. Lairg
  174. (in Russian) Lake Cheko
  175. Tai Hu
  176. Roger Weller. Tai Hu crater Archived 2016-09-16 at the Wayback Machine
  177. Wang, K.; Geldsetzer, H. H. J. (1992). "A late Devonian impact event and its association with a possible extinction event on Eastern Gondwana". Lunar and Planetary Inst., International Conference on Large Meteorite Impacts and Planetary Evolution: 77. Bibcode:1992lmip.conf...77W.
  178. Loch Leven
  179. B. J. Hamill (2003). The Loch Leven Crater: Anatomy Of A Low-Angle Oblique Impact Structure, Large Meteorite Impacts
  180. "Lonar". www.passc.net. Retrieved 2023-02-06.
  181. Lorne
  182. Tonkin, P. C. (1998). "Lorne Basin, New South Wales: Evidence for a possible impact origin?". Australian Journal of Earth Sciences. 45 (5): 669–671. Bibcode:1998AuJES..45..669T. doi:10.1080/08120099808728423.
  183. Lycksele 2
  184. D. Nisca, H. Thunehed, L.J. Pesonen, S-Å. Elming (1997). The Lycksele structure, a huge ring formation in northern Sweden: result of an impact?, Large Meteorite Impacts and Planetary Evolution
  185. Pesonen, L. J. (1996). "The impact cratering record of Fennoscandia". Earth, Moon, and Planets. 72 (1–3): 377–393. Bibcode:1996EM&P...72..377P. doi:10.1007/BF00117542. hdl: 2060/19930000983 . S2CID   125579093.
  186. Madagascar 3
  187. Roger Weller. Madagascar structure Archived 2016-09-16 at the Wayback Machine
  188. Bodosky, T.; Kis, M.; Kummer, I.; Don, G. (2006). "The telluric conductivity anomaly at Magyarmecske: is it aburied impact crater?". 40th ESLAB–First International Conference on Impact Cratering in the Solar System–Proceedigs CD. Noordwijks, the Netherlands: 221–223.
  189. Bodosky, T.; Don, G.; Kis, MI.; Kummer, I. (2007). "Is the Magyarmecske telluric conductivity anomaly a buried impact structure?". Central European Geology. 50 (3): 199–223. Bibcode:2007CEJGl..50..199B. doi:10.1556/CEuGeol.50.2007.3.2.
  190. Mahuika
  191. Abbott, D.H., A. Matzen, E.A. Bryant, and S.F. Pekar (2003). Did a bolide impact cause catastrophic tsunamis in Australia and New Zealand?. Geological Society of America Abstracts with Programs, 35:168
  192. Maniitsoq
  193. Garde, Adam A.; McDonald, Iain; Dyck, Brendan; Keulen, Nynke (2012). "Searching for giant, ancient impact structures on Earth: The Mesoarchaean Maniitsoq structure, West Greenland". Earth and Planetary Science Letters. 337–338: 197–210. Bibcode:2012E&PSL.337..197G. doi:10.1016/j.epsl.2012.04.026.
  194. Scherst, Anders; Garde, Adam A. (30 July 2013). "Complete hydrothermal re-equilibration of zircon in the Maniitsoq structure, West Greenland: A 3001 Ma minimum age of impact?". Meteoritics & Planetary Science. 48 (8): 1472–1498. Bibcode:2013M&PS...48.1472S. doi: 10.1111/maps.12169 . S2CID   140675056.
  195. Mejaouda
  196. Roger Weller. Mejaouda crater Archived 2016-09-17 at the Wayback Machine
  197. Merewether crater
  198. J. B. Garvin and J. J. Frawley (2008). Geometric Properties Of The Merewether Structure, Newfoundland, Canada.Lunar and Planetary Science XXXIX (2008)
  199. Meseta de la Barda Negra
  200. A.C. Ocampo, A.C. Garrido, J. Rabassa, M.C. Rocca, J.C. Echaurren, and E. Mazzoni (2005). A Possible Impact Crater In Basalt At Meseta De La Barda Negra, Neuquen, Argentina, 68th Annual Meteoritical Society Meeting
  201. Middle Urals
  202. G. Burba (1991). Middle-Urals Ring structure, USSR: Definition, description, possible planetary analogues, Lunar and Planetary Science conference XXII.
  203. G. Burba (2003). The geologic evolution of the Ural Mountains: A supposed exposure to a giant impact Archived 2021-08-31 at the Wayback Machine . Microsymposium 38, MS011
  204. Mistassini
  205. S. Genest and F. Robert The Mistassini-Otish impact structure, Northern Quebec, Canada: an update – 1987
  206. Mount Ashmore
  207. Glikson, A.; Jablonski, D.; Westlake, S. (2010). "Origin of the Mt Ashmore structural dome, west Bonaparte Basin, Timor Sea". Australian Journal of Earth Sciences. 57 (4): 411–430. Bibcode:2010AuJES..57..411G. doi:10.1080/08120099.2010.481327. S2CID   129839418.
  208. Examining a new asteroid crater found in the Timor Sea Archived 2016-06-29 at the Wayback Machine . ScienceWise 2010, Australian National Uni
  209. Mousso
  210. Buchner, Elmar; Schmieder, Martin (2007). "Mousso structure: A deeply eroded, medium-sized, complex impact crater in northern Chad?". Journal of African Earth Sciences. 49 (3): 71–78. Bibcode:2007JAfES..49...71B. doi:10.1016/j.jafrearsci.2007.06.003.
  211. Oikeyama
  212. Sakamoto, Masao; Gucsik, Arnold; Nishido, Hirotsugu; Ninagawa, Kiyotaka; Okumura, Tasuku; Toyoda, Shin (2010), "Micro Raman spectroscopy of anomalous planar microstructures in quartz from Mt. Oikeyama: Discovery of a probable impact crater in Japan", Meteoritics and Planetary Science, 45 (1): 32, Bibcode:2010M&PS...45...32S, doi: 10.1111/j.1945-5100.2009.01003.x
  213. Mulkarra
  214. J. B. Plescia (1999). Mulkarra Impact Structure, South Australia: A Complex Impact Structure, Lunar and Planetary Science XXX
  215. Nastapoka
  216. Dietz R.S., McHone J.F. (1990). Chesterfield structure (Hudson Bay): possible astrobleme. Lunar and Planet. Sci.: Abstr. Pap. 21st Lunar and Planet. Sci. Conf., March 12–16. Vol. 21, Houston (Tex.), p. 286
  217. Brookfield Michael (2006). The great arc of eastern Hudson Bay, Canada: part of a multi-ringed impact basin. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, p. 35
  218. Nicholson, Uisdean (2022). "The Nadir Crater offshore West Africa: A candidate Cretaceous-Paleogene impact structure". Science Advances. 8 (33). eabn3096. Bibcode:2022SciA....8N3096N. doi:10.1126/sciadv.abn3096. PMC   9385158 . PMID   35977017.
  219. Ouro Ndia
  220. Pantasma
  221. Panther Mountain
  222. Isachsen, Y.W. (1988). "Metallic spherules and a microtektite support the interpretation of a buried impact crater beneath Panther Mountain in the central Catskill Mountains, New York". Meteoritics & Planetary Science. 33 (4): 74. Bibcode:1998M&PSA..33R..74I.
  223. Isachsen Y.W., Wright S.F., Revetta F.A., Dineen R.J. (1992). The Panther mountain circular structure, a possible buried meteorite crater. Pap. Present. Int. Conf. Large Meteorite Impacts and Planet. Evol., Sudbury, Aug. 31 – Sept. 2, 1992, Houston (Tex.), p. 40
  224. Peerless
  225. J.M. Comstock and J.R. Morrow (2000). PEERLESS STRUCTURE SOUTHWESTERN DANIELS COUNTY, MONTANA: A PROBABLE MIDORDOVICIAN IMPACT EVENT, Lunar and Planetary Science XXXI
  226. Piratininga
  227. Hachiro J. (2000). Four impact cratering on the Parana sedimentary Basin (South America). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000. Rio de Janeiro: Geol. Surv. Braz., p. 6424
  228. Praia Grande
  229. Ramgarh
  230. Nayak V.K. (1997). The circular structure at Ramgarh, India: an astrobleme(?). LPI Contrib., No. 922, p. 31
  231. Master, S.; Pandit, M.K. (1999). "New evidence for an impact origin of the Ramgarh structure, Rajasthan, India ". Meteoritics & Planetary Science. 34 (4): 79. Bibcode:1999M&PSA..34R..79M.
  232. Ross
  233. Berg J.H. (1991). Crustal xenoliths from Cape McCormick crater, Northern Victoria Land . 6th Int. Symp. Antarct. Earth Eci., Ranran-machi, 9–13 Sept., 1991, Abstr. - [Tokyo], p. 49
  234. Rubielos de la Cérida
  235. Bohor B.F., Foord E.E., Modreski P.J. (1985). Extraterrestrially-derived magnesioferrite at the K-T boundary, Caravaca, Spain. Lunar and Planet. Sci. Vol. 16: Abstr. Pap. 16th Conf., March 11–15, 1985. Pt 1, Houston, Tex., pp. 77–78
  236. Langenhorst, F.; Deutsch, A. (1996). "The Azuara and Rubielos Structures, Spain: Twin Impact Craters or Alpine Thrust Systems? TEM Investigations on Deformed Quartz Disprove Shock Origin". Lunar and Planetary Science Conference. 27: 725. Bibcode:1996LPI....27..725L.
  237. Sakhalinka
  238. B. Levin, E. Gretskaya, G. Nemchenko (2006). A new astrobleme in the Pacific Ocean, Doklady Earth Sciences, 2006, Vol. 411, No. 8, pp. 1336–1338.
  239. Bostwick Jennifer A., Kyte Frank T. (1993). Impact mineralogy and chemistry of the cretaceous-tertiary boundary at DSDP site 576. Lunar and Planet. Sci. Vol. 24. Abstr. Pap. 24th Lunar and Planet. Sci. Conf., March 15–19, 1993. Pt 1., Houston (Tex.), p. 157
  240. Kyte, Frank T.; Bostwick, Jennifer A. (1995). "Magnesioferrite spinel in Cretaceous/Tertiary boundary sediments of the Pacific basin: Remnants of hot, early ejecta from the Chicxulub impact?". Earth and Planetary Science Letters. 132 (1–4): 113–127. Bibcode:1995E&PSL.132..113K. doi:10.1016/0012-821X(95)00051-D.
  241. Kyte Frank T. (1996). A piece of the KT bolide?. Lunar and Planet. Sci. Vol. 27. Abstr. Pap. 27th Lunar and Planet. Sci. Conf., March 18–22, 1996. Pt 2, Houston (Tex.), p. 717
  242. São Miguel do Tapuio
  243. W. D. MacDonald, A. P. Crosta, J. Francolin (2006) Structural Dome At São Miguel do Tapuio, Piaui, Brazil, 69th Annual Meteoritical Society Meeting
  244. Castelo Branco R.M.G. (2000). Some evidences on northeast Brazilian impact structures (astroblemes). The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz., p. 4479
  245. Castelo Branco R.M.G., Lopes de Castro D. (2004). Geological, geophysical and imaging data of Sao Miguel do Tapuio (SMT) astrobleme, Brazil. 67th Annual Meteoritical Society Meeting
  246. Shanghewan
  247. Dietz, R. S.; McHone, J. F. (1991). "Astroblemes Recently Confirmed with Shatter Cones". 54th Annual Meeting of the Meteoritical Society. 54: 56. Bibcode:1991LPICo.766...56D.
  248. Wu, S. (1988). "The Shanghewan Impact Crater, China". Lunar and Planetary Science Conference. 19: 1296. Bibcode:1988LPI....19.1296W.
  249. Shiva
  250. Shiyli
  251. S. A. Vishnevsky (2007). Shiyli Dome, Kazakhstan: Origin Of Central Uplift By Elastic Response, Workshop on Impact Cratering II
  252. Silverpit
  253. Stewart SA, Allen PJ (2002). "A 20-km-diameter multi-ringed impact structure in the North Sea". Nature . 418 (6897): 520–523. Bibcode:2002Natur.418..520S. doi:10.1038/nature00914. PMID   12152076. S2CID   4381323.
  254. doi : 10.1144/0016-764903-1
  255. Collins G.S., Turtle E.P., Melosh H.J. (2003). Numerical simulations of silverpit crater collapse: a comparison of Tekton and SALES . LPI Contrib., No. 1155, p. 18
  256. Stratford R. (2004). Bombarded Britain: A Search for British Impact Structures // Imperial College Press, London
  257. Collins G., Pain C. C., Wilson C. (2006) MODELLING IMPACT CRATER COLLAPSE IN THREE DIMENSIONS
  258. Conway Z.K., Haszeldine S., Rider M. (2006). Determining the origin of the Silverpit crater, UK southern North Sea: can you prove the existence of a meteorite crater without geochemical or mineralogical data?. 40 ESLAB Symposium: 1 International Conference on Impact Cratering in the Solar System, Noordwijk, 8–12 May 2006, Noordwijk: ESA, P. 53
  259. Cartwright J., Davies R., Stewart S., Wall M. (2006) BURIAL OF THE SILVERPIT METEORITE CRATER
  260. Sirente
  261. Speranza, F.; Nicolosi, I.; Ricchetti, N.; Etiope, G.; Rochette, P.; Sagnotti, L.; De Ritis, R.; Chiappani, M. (2009). "The "Sirente crater field", Italy". J. Geophys. Res. B. 114 (3): B03103/1. doi:10.1029/2008JB005759.
  262. Mikheeva, A.V., 2019. Sithylemenkat Lake (Sythylemenkat) USA, Alaska, The Complete Catalog of the Earth's Impact structures, ICM&MG SB RAS
  263. Cannon, P.J. (1977). "Meteorite impact crater discovered in central Alaska with Landsat imagery". Science. 196 (4296): 1322–1324. Bibcode:1977Sci...196.1322C. doi:10.1126/science.196.4296.1322. PMID   17831748. S2CID   40015482.
  264. Patton Jr, W.W., Miller, T.P. and Cannon, P.J., 1978. Meteorite impact crater in central Alaska. Science, 201(4352), pp. 279–279.
  265. Rajmon, D., 2012. David Rajmon Global Impact Crater GIS Project AAPG Datapages, Tulsa Oklahoma: American Association of Petroleum Geologists.
  266. Smerdyacheye
  267. L. L. Kashkarov, D. D. Badjukov, A. I. Ivliev, G. V. Kalinina, and M. A. Nazarov, Vernadsky (2005). The Smerdyacheye Lake: New Evidence For Impact Origin And Formation Age, Lunar and Planetary Science XXXVI
  268. Red Sea Hills
  269. G. Di Achille (2005). A New Candidate Impact Site In Northeastern Sudan Detected From Remote Sensing, Lunar and Planetary Science XXXVI
  270. Chabou M.Ch. (2016). AN UPDATED INVENTORY OF METEORITE IMPACT STRUCTURES IN THE ARAB WORLD // Conference: First ArabGU International Conference (AIC-1). February 17–18, 2016. At: FSTGAT-USTHB, Algiers, ALGERIA.
  271. Bayuda
  272. A. Sparavigna (2010) Crater-Like Landform in Bayuda Desert (A Processing of Satellite Images)
  273. Amelia Carolina Sparavigna (2010). "Craters and ring complexes of the North-East Sudanese country". arXiv: 1008.3976 [physics.geo-ph].
  274. Svetloyar Lake
  275. V. Feldman, A. Kiselev (2008). Shock-melted impactites at the Svetloyar meteorite crater Volga area, Russia, Lunar and Planetary Science XXXIX
  276. Takamatsu
  277. Y. Miura (2007) Analyses Of Surface And Underground Data Of Takamatsu Crater In Japan. Lunar and Planetary Science XXXVIII
  278. Miura, Y.; Okamoto, M.; Fukuchi, T.; Sato, H.; Kono, Y.; Furumoto, M. (1995). "Takamatsu Crater Structure: Preliminary Report of Impact Crater in Active Orogenic Region". Lunar and Planetary Science Conference. 26: 987. Bibcode:1995LPI....26..987M.
  279. Miura Y. (2002). Shocked quartz materials found in Japan. 18 General Meeting of the International Mineralogical Association "Mineralogy for the New Millennium", Edingurgh, 1–6 Sept., 2002, Edinburgh: IMA, p.105
  280. Miura Y., Hirota A. (2002). Impact-related glasses in Japan. Bull. liaison Soc. fr. mineral. et cristallogr., Vol. 14, No. 1, pp. 18–19
  281. Tarek
  282. Paillou, Philippe; Reynard, Bruno; Malézieux, Jean-Marie; Dejax, Jean; Heggy, Essam; Rochette, Pierre; Reimold, Wolf Uwe; Michel, Patrick; Baratoux, David; Razin, Philippe; Colin, Jean-Paul (2006). "An extended field of crater-shaped structures in the Gilf Kebir region, Egypt: Observations and hypotheses about their origin". Journal of African Earth Sciences. 46 (3): 281–299. Bibcode:2006JAfES..46..281P. doi:10.1016/j.jafrearsci.2006.05.006.
  283. Roger Weller. Tarek crater Archived 2016-09-16 at the Wayback Machine
  284. Tatarsky North
  285. 1 2 B. W. Levin, S. A. Vishnevsky, and N. A. Palchik (2010). Underwater depressions on the bottom of the Tatarsky Strait, the Sea of Japan (western coast of the Sakhalin Island, Russia): possible marine impact craters, 41st Lunar and Planetary Science Conference
  286. Tatarsky South
  287. Tefé
  288. J. de Menezes, C. de Souza, F. Fortes, and C. Filho (1999). Geophysical Evidence Of A Possible Impact Structure At The K-T Boundary Of The Solimões Basin, Brazil Archived 2016-08-08 at the Wayback Machine , 6th International Congress of the Brazilian Geophysical Society
  289. Talundilly
  290. K. Bron (2015) The Tookoonooka-Talundilly tsunami sequence: constraining marine impact stratigraphy, Australian School of Petroleum, The University of Adelaide
  291. Gostin, V. A.; Therriault, A. M. (1997). "Tookoonooka, a large buried Early Cretaceous impact structure in the Eromanga Basin of southwestern Queensland, Australia". Meteoritics and Planetary Science. 32 (4): 593–599. Bibcode:1997M&PS...32..593G. doi: 10.1111/j.1945-5100.1997.tb01303.x . PMID   11540422.
  292. Temimichat
  293. Roger Weller. Temimichat crater Archived 2016-09-16 at the Wayback Machine
  294. Tsenkher
  295. G. Komatsu et al. (2015)The Tsenkher structure, Gobi-Altai, Mongolia: A probable impact crater with well-preserved rampart ejecta. 46th Lunar and Planetary Science Conference (2015)
  296. Khosbayar P., Ariunbileg Kh. (2000). Impact structure in Mongolia . The 31st International Geological Congress, Rio de Janeiro, Aug. 6–17, 2000, Rio de Janeiro: Geol. Surv. Braz, p. 6429
  297. Toms Canyon
  298. Glass B.P. (1987). Coesite associated with North American tektite debris in DSDP site 612 on the continental slope off NEW Jersey . Lunar and Planet. Sci. Houston (Tex.), s.a.. Vol. 18: 18th Conf., Houston Tex., March 16–20, 1987: Abstr. Pap., pp. 328–329
  299. Poag, C.Wylie; Poppe, Lawrence J. (1998). "The Toms Canyon structure, New Jersey outer continental shelf: A possible late Eocene impact crater". Marine Geology. 145 (1–2): 23–60. Bibcode:1998MGeol.145...23P. doi:10.1016/S0025-3227(97)00113-8.
  300. doi : 10.2110/jsr.2011.42
  301. Vélingara
  302. S. Wade, M. Barbieri, J. Lichtenegger (2001) The Velingara Circular Structure ESA Bulletin June 2001
  303. Versailles
  304. Harris, James B.; Jones, Daniel R.; Street, R. L. (1991). "A Shallow Seismic Refraction Study of the Versailles Cryptoexplosion Structure, Central Kentucky". Meteoritics. 26 (1): 47. Bibcode:1991Metic..26...47H. doi:10.1111/j.1945-5100.1991.tb01014.x.
  305. updated, Daisy Dobrijevic last (2021-10-29). "10 Earth impact craters you must see". Space.com. Retrieved 2023-02-06.
  306. Vichada
  307. Victoria Island
  308. 1 2 Glikson, A.Y.; Meixner, A.J.; Radke, B.; Uysal, I.T.; Saygin, E.; Vickers, J.; Mernagh, T.P. (2015). "Geophysical anomalies and quartz deformation of the Warburton West structure, central Australia". Tectonophysics. 643: 55–72. doi:10.1016/j.tecto.2014.12.010.
  309. 1 2 Glikson, A.Y. and Pirajno, F., 2018. The World’s Largest Late to Post-Archaean Asteroid Impact Structures. In Asteroids Impacts, Crustal Evolution and Related Mineral Systems with Special Reference to Australia (pp. 61-78). Springer, Cham.,
  310. 1 2 Stephen Luntz (2013). Huge Asteroid Impact Identified. Australasian Science
  311. Glikson, Andrew (2018). "Structure and origin of Australian ring and dome features with reference to the search for asteroid impact events". Tectonophysics. 722: 175–196. Bibcode:2018Tectp.722..175G. doi:10.1016/j.tecto.2017.11.003. hdl: 1885/139145 .
  312. Dulin S. and Elmore R. D. 2008. Paleomagnetism of the Weaubleau structure, southwestern Missouri. In The sedimentary record of meteorite impacts. (pp. 55-64). Geological Society of America Special Paper No. 437.
  313. Evans, K.R., Mickus, K.L., Rovey II, C.W. and Davis, G.H., 2003. Field Trip I: The Weaubleau-Osceola Structure: Evidence of a Mississippian Meteorite Impact in Southwestern Missouri. Association of Missouri Geologists Field Trip Guidebook. 50th Annual Meeting Springfield, Missouri September 26–27, 2003, Missouri Department of Natural Resources, Rollo, MIssouri.
  314. Beauford, R.E., 2015. Physical records of impacts in the early and modern solar system. PhD thesis, University of Arkansas, Fayetteville, Arkansas, 174 p.
  315. Wembo-Nyama
  316. G. Monegato; M. Massironi & E. Martellato (2010). "The Ring Structure of Wembo-Nyama (Eastern Kasai, R.D. Congo): A Possible Impact Crater in Central Africa" (PDF). Lunar and Planetary Science. XLI (1533): 1601. Bibcode:2010LPI....41.1601M.
  317. "Ring may be giant 'impact crater'". BBC News. 2010-03-10. Retrieved 2010-05-08.
  318. Wilkes Land 2
  319. Woodbury
  320. E. F. Albin and R. S. Harris (2016). WOODBURY ASTROBLEME: FURTHER EVIDENCE FOR A LATE PROTEROZOIC IMPACT STRUCTURE IN WEST-CENTRAL GEORGIA, US, 47th Lunar and Planetary Science Conference
  321. Halford, Natalie; Barineau, Clinton (2019). "The Search for Impact Features in Proposed Target Rocks of the "Woodbury" Structure in the Pine Mountain Belt of Southwestern Georgia". Geological Society of America Abstracts with Programs. 51 (3). doi:10.1130/abs/2019SE-327565. S2CID   195549826.
  322. Miller, Jeremy; Barineau, Clinton (2016). "A Case of Mistaken Identity: The "Woodbury" Structure of South Central Georgia". Geological Society of America Abstracts with Programs. 48 (7). doi:10.1130/abs/2016AM-285522.
  323. Yallalie
  324. Dentith, M.; Bevan, A.; Backhouse, J.; Featherstone, W.; Koeberl, C. (1999). "Yallalie: a Buried Structure of Possible Impact Origin in the Perth Basin, Western Australia". Geological Magazine. 136 (6): 619–632. Bibcode:1999GeoM..136..619D. doi:10.1017/s0016756899003386. hdl: 20.500.11937/10289 . S2CID   38389086.
  325. Grant, B. The Yallalie Impact Structure.
  326. Dodson, J.R.; Ramrath, A. (2001). "An Upper Pliocene lacustrine environmental record from south-Western Australia — preliminary results". Palaeogeography, Palaeoclimatology, Palaeoecology. 167 (3–4): 309–320. Bibcode:2001PPP...167..309D. doi:10.1016/S0031-0182(00)00244-3.
  327. Dodson, J.; MacPhail, M. K. (2004). "Palynological evidence for aridity events and vegetation change during the Middle Pliocene, a warm period in Southwestern Australia". Global and Planetary Change. 41 (3–4): 285–307. Bibcode:2004GPC....41..285D. doi:10.1016/j.gloplacha.2004.01.013.
  328. 1 2 Zerelia East & West
  329. 1 2 Dietrich, V. J; Lagios, E; Reusser, E; Sakkas, V; Gartzos, E; Kyriakopoulos, K (2013). "The enigmatic Zerelia twin-lakes (Thessaly, Central Greece): two potential meteorite impact Craters". Solid Earth Discussions. 5 (2): 1511–1573. Bibcode:2013SolED...5.1511D. doi: 10.5194/sed-5-1511-2013 . S2CID   56034694.
  330. Whitehouse, David (2003-06-23). "Space impact 'saved Christianity'". BBC News. British Broadcasting Corporation . Retrieved 2009-09-10.
  331. Sandra Blakeslee (2006). Ancient Crash, Epic Wave
  332. Master, S. (2002) Umm al Binni lake, a possible Holocene impact structure in the marshes of southern Iraq. In: Leroy, S. and Stewart, I.S. (Eds.), Environmental Catastrophes and Recovery in the Holocene, Abstracts Volume, Brunel University, UK, 29 August – 2 September 2002, pp. 56–57
  333. R. V. Karanth, P. Thakker, and M. Gadhavi 2006. A preliminary report on the possible impact crater of Kachchh Archived 2016-07-01 at the Wayback Machine , Current Science, vol. 91, no. 7, October 2006
  334. Kjær, Kurt H. (November 2018). "A large impact crater beneath Hiawatha Glacier in northwest Greenland". Science Advances. 4 (11): eaar8173. Bibcode:2018SciA....4.8173K. doi:10.1126/sciadv.aar8173. PMC   6235527 . PMID   30443592.
  335. 1 2 Voosen P (14 November 2018). "Massive crater under Greenland's ice points to climate-altering impact in the time of humans". Sciencemag.org. Science. Archived from the original on 13 January 2019. Retrieved 13 January 2019.
  336. Boslough M (March 2019). "Crater Discovery Story Flawed by Premature Link to Speculative Impact Hypothesis". Skeptical Inquirer . 43 (2): 6–7.
  337. Holliday, Vance T.; Daulton, Tyrone L.; Bartlein, Patrick J.; Boslough, Mark B.; Breslawski, Ryan P.; Fisher, Abigail E.; Jorgeson, Ian A.; Scott, Andrew C.; Koeberl, Christian; Marlon, Jennifer; Severinghaus, Jeffrey; Petaev, Michail I.; Claeys, Philippe (2023-07-26). "Comprehensive refutation of the Younger Dryas Impact Hypothesis (YDIH)". Earth-Science Reviews. 247: 104502. Bibcode:2023ESRv..24704502H. doi: 10.1016/j.earscirev.2023.104502 . S2CID   260218223.
  338. Copenhagen, University of (9 March 2022). "Giant impact crater in Greenland occurred a few million years after dinosaurs went extinct". phys.org. Archived from the original on 10 March 2022.
  339. Stevens, G; Spooner, I; Morrow, J; Pufahl, P; Raeside, R; Grieve, RAF; Stanley, CR; Barr, SM; McMullin, D (2008). "Physical evidence of a late-glacial (Younger Dryas?) impact event in southwestern Nova Scotia". Atlantic Geology. 44: 42.
  340. Goff, James; et al. (2010). "Analysis of the Mahuika comet impact tsunami hypothesis". Marine Geology . 271 (3/4): 292–296. Bibcode:2010MGeol.271..292G. doi:10.1016/j.margeo.2010.02.020.
  341. Bourgeois, Joanne; Weiss, Robert (2009). "'Chevrons' are not mega-tsunami deposits – A sedimentologic assessment" (PDF). Geology. 37 (5): 403–406. Bibcode:2009Geo....37..403B. doi:10.1130/G25246A.1.
  342. Pinter, Nicholas; Ishman, Scott E. (2008). "Impacts, mega-tsunami, and other extraordinary claims". GSA Today. 18 (1): 37. Bibcode:2008GSAT...18a..37P. doi: 10.1130/GSAT01801GW.1 .
  343. Povenmire H., Liu W. and Xianlin I. (1999) "Australasian tektites found in Guangxi Province, China", 30th Annual Lunar and Planetary Science Conference, Houston, March 1999.
  344. 1 2 Glass, B. P.; Pizzuto, J. E. (1994). "Geographic variation in Australasian microtektite concentrations: Implications concerning the location and size of the source crater". Journal of Geophysical Research. 99 (E9): 19075. Bibcode:1994JGR....9919075G. doi:10.1029/94JE01866.
  345. Hartung, Jack; Koeberl, Christian (1994). "In search of the Australasian tektite source crater: The Tonle Sap hypothesis". Meteoritics. 29 (3): 411–416. Bibcode:1994Metic..29..411H. doi:10.1111/j.1945-5100.1994.tb00606.x.
  346. Vastag, Brian (18 February 2013). "Crater found in Iowa points to asteroid break-up 470 million years ago". Washington Post . Retrieved 19 February 2013.
  347. Ernstson, K.; Claudin, F.; Schüssler, U.; Hradil, K. (2002). "The mid-Tertiary Azuara and Rubielos de la Cérida paired impact structures (Spain)" (PDF). Treb. Mus. Geol. Barcelona. 11: 5–65.
  348. World's largest asteroid impact zone found in Australia: Meteorite broke in two, leaving two craters each 200 km across. Mar 24, 2015
  349. Magnetic anomaly map, Sudbury, Ontario and Quebec. Natural Resources Canada
  350. Rocca, M.; Presser, J. (2015). "A possible new very large impact structure in Malvinas Islands". Historia Natural, Tercera Series. 5 (2).
  351. L. Antoine, W. Reimold, and A. Tessema (1999) The Bangui Magnetic Anomaly Revisited, 62nd Annual Meteoritical Society Meeting
  352. Howard Falcon-Lang (2010). Double space strike 'caused dinosaur extinction', BBC News
  353. Jolley, D.; Gilmour, I.; Gurov, E.; Kelley, S.; Watson, J. (2010). "Two large meteorite impacts at the Cretaceous-Paleogene boundary" (PDF). Geology. 38 (9): 835–838. Bibcode:2010Geo....38..835J. doi:10.1130/G31034.1. S2CID   120172960.
  354. Becker L., Shukolyukov A., Macassic C., Lugmair G. & Poreda R. 2006. Extraterrestrial Chromium at the Graphite Peak P/Tr boundary and in the Bedout Impact Melt Breccia. Lunar and Planetary Science XXXVII (2006), abstract # 2321.PDF
  355. Gorder, Pam Frost (June 1, 2006). "Big Bang in Antarctica – Killer Crater Found Under Ice". Ohio State University Research News. Archived from the original on March 6, 2016.
  356. Hodych, J.P.; G.R.Dunning (1992). "Did the Manicouagan impact trigger end-of-Triassic mass extinction?". Geology. 20 (1): 51.54. Bibcode:1992Geo....20...51H. doi:10.1130/0091-7613(1992)020<0051:DTMITE>2.3.CO;2.
  357. Schultz, P. H.; Harris, R. S.; Perroud, S.; Blanco, N.; Tomlinson, S. (2022). "Widespread glasses generated by cometary fireballs during the late Pleistocene in the Atacama Desert, Chile". Geology. 50 (2): 205. Bibcode:2022Geo....50..205S. doi: 10.1130/G49426.1 . S2CID   242062030.
  358. Cavosie, A.J.; Koeberl, C. (2019). "Overestimation of threat from 100 Mt–class airbursts? High-pressure evidence from zircon in Libyan Desert Glass". Geology. 47 (7): 609–612. Bibcode:2019Geo....47..609C. doi:10.1130/G45974.1. S2CID   155125330.
  359. Koeberl, C.; Ferrière, L. (2019). "Libyan Desert Glass area in western Egypt: Shocked quartz in bedrock points to a possible deeply eroded impact structure in the region". Meteoritics & Planetary Science. 54 (10): 2398–2408. Bibcode:2019M&PS...54.2398K. doi: 10.1111/maps.13250 . S2CID   134219301.
  360. Sighinolfi, G.P.; Lugli, F.; Piccione, F.; Michele, V.D.; Cipriani, A. (2020). "Terrestrial target and melting site of Libyan Desert Glass: New evidence from trace elements and Sr isotopes". Meteoritics & Planetary Science. 55 (8): 1865–1883. Bibcode:2020M&PS...55.1865S. doi:10.1111/maps.13550. S2CID   225333357.
  361. Sestov, V.; Shuvalov, V.; Kosarev, I. (2020). "Formation of Libyan Desert Glass: Numerical simulations of melting of silica due to radiation from near-surface airbursts". Meteoritics & Planetary Science. 55 (4): 895–910. Bibcode:2020M&PS...55..895S. doi:10.1111/maps.13470. S2CID   216264770.
  362. Haldemann, A. F. C.; Kleindienst, M. R.; Churcher, C. S.; Smith, J. R.; Schwarcz, H. P.; Markham, K.; Osinski, G. (August 2005). "Mapping Impact Modified Sediments: Subtle Remote-Sensing Signatures of the Dakhleh Oasis Catastrophic Event, Western Desert, Egypt". Bulletin of the American Astronomical Society. 37: 648. Bibcode:2005DPS....37.1703H.
  363. G. Osinski, A. Haldemann, et al. (2007). Impact Glass At The Dakhleh Oasis, Egypt: Evidence For A Cratering Event Or Large Aerial Burst?, Lunar and Planetary Science XXXVIII
  364. Bland, P. A.; De Souza Filho, C. R.; Jull, A. J.; Kelley, S. P.; Hough, R. M.; Artemieva, N. A.; Pierazzo, E.; Coniglio, J.; Pinotti, L.; Evers, V.; Kearsley, A. T. (2002). "A Possible Tektite Strewn Field in the Argentinian Pampa". Science. 296 (5570): 1109–1111. Bibcode:2002Sci...296.1109B. doi:10.1126/science.1068345. PMID   12004127. S2CID   41279356.
  365. Schulz, P.H.; Zárate, M.; Hames, B.; Koeberl, C.; Bunch, T.; Storzer, D.; Renne, P.; Wittke, J. (2004). "The Quaternary impact record from the Pampas, Argentina". Earth and Planetary Science Letters. 219 (3–4): 221–238. Bibcode:2004E&PSL.219..221S. doi:10.1016/S0012-821X(04)00010-X.
  366. Schulz, P.H.; Zárate, M.; Hames, B.; Harris, R.S.; Bunch, T.; Koeberl, C.; Renne, P.; Wittke, J. (2006). "The record of Miocene impacts in the Argentine Pampas". Meteoritics & Planetary Science. 41 (5): 749–771. Bibcode:2006M&PS...41..749S. doi:10.1111/j.1945-5100.2006.tb00990.x. hdl: 11336/81867 . S2CID   7590495.
  367. Povenmire, H.; Burrer, B.; Cornec, J.H.; Harris, R.S. (2012). "The New Central American Tektite Strewn Field Update" (PDF). 43rd Lunar and Planetary Science Conference, Houston, Texas. Abstract No. 1260.
  368. Schwarz, W.H.; Trieloff, M.; Bollinger, K.; Gantert, N.; Fernandes, V.A.; Meyer, H.P.; Povenmire, H.; Jessberger, E.K.; Guglielmino, M.; Koeberl, C. (2016). "Coeval ages of Australasian, Central American and Western Canadian tektites reveal multiple impacts 790 ka ago". Geochimica et Cosmochimica Acta. 178: 307–319. Bibcode:2016GeCoA.178..307S. doi:10.1016/j.gca.2015.12.037.
  369. Koeberl, C.; Glass, B.P.; Schulz, T.; Wegner, W.; Giuli, G.; Cicconi, M.R.; Trapananti, A.; Stabile, P.; Cestelli-Guidi, M.; Park, J.; Herzog, G.F. (2022). "Tektite glasses from Belize, Central America: Petrography, geochemistry, and search for a possible meteoritic component". Geochimica et Cosmochimica Acta. 325: 232–257. Bibcode:2022GeCoA.325..232K. doi: 10.1016/j.gca.2022.02.021 . hdl: 11581/470415 . S2CID   247063391.
  370. Drake, Simon M.; Beard, Andrew D.; Jones, Adrian P.; Brown, David J.; Fortes, A. Dominic; Millar, Ian L.; Carter, Andrew; Baca, Jergus; Downes, Hilary (2017). "Discovery of a meteoritic ejecta layer containing unmelted impactor fragments at the base of Paleocene lavas, Isle of Skye, Scotland". Geology. 46 (2): 171. Bibcode:2018Geo....46..171D. doi: 10.1130/g39452.1 .
  371. Simms, Michael J. (December 2015). "The Stac Fada impact ejecta deposit and the Lairg Gravity Low: evidence for a buried Precambrian impact crater in Scotland?". Proceedings of the Geologists' Association. 126 (6): 742–761. Bibcode:2015PrGA..126..742S. doi:10.1016/j.pgeola.2015.08.010 . Retrieved 5 April 2017.
  372. Kenny, G.G.; O’Sullivan, G.J.; Alexander, S.; Simms, M.J.; Chew, D.M.; Kamber, B.S. (2019). "On the track of a Scottish impact structure: a detrital zircon and apatite provenance study of the Stac Fada Member and wider Stoer Group, NW Scotland" (PDF). Geological Magazine. 156 (11): 1863–1876. Bibcode:2019GeoM..156.1863K. doi:10.1017/S0016756819000220. S2CID   150192833.
  373. Osinski, G.R.; Ferrière, L.; Hill, P.J.A.; Pave, A.R.; Preston, L.J.; Singleton, A.; Pickersgill, A.E. (2014). "The Mesoproterozoic Stac Fada Member, NW Scotland: an impact origin confirmed but refined". Journal of the Geological Society. 178 (9): no. jgs2020-056.
  374. Sleep, N.H.; Lowe, D.R. (2004). "Physics of crustal fracturing and chert dike formation triggered by asteroid impact, ~3.26 Ga, Barberton greenstone belt, South Africa". Geochemistry, Geophysics, Geosystems. 159 (4): 1045–1070.
  375. Lowe, D.R.; Byerly, G.R.; Kyte, F.T. (2014). "Recently discovered 3.42–3.23 Ga impact layers, Barberton Belt, South Africa: 3.8 Ga detrital zircons, Archean impact history, and tectonic implications". Geology. 42 (9): 747–750. Bibcode:2014Geo....42..747L. doi:10.1130/G35743.1.
  376. Glikson, A.; Hickman, A.; Evans, N.J.; Kirkland, C.L.; Park, J.W.; Rapp, RS.; Romanon, S. (2016). "A new ~3.46 Ga asteroid impact ejecta unit at Marble Bar, Pilbara Craton, Western Australia: A petrological, microprobe and laser ablation ICPMS study". Precambrian Research. 279: 103–122. Bibcode:2016PreR..279..103G. doi:10.1016/j.precamres.2016.04.003.
  377. Subrahmanya, K. R.; Prakash Narasimha, K. N. (October 2017). "Kaveri crater – An impact structure in the Precambrian terrain of southern India". Journal of the Geological Society of India. 90 (4): 387–395. Bibcode:2017JGSI...90..387S. doi:10.1007/s12594-017-0733-5. ISSN   0016-7622. S2CID   134717819.
  378. Weidinger JT, Korup O (2008). "Frictionite as evidence for a large Late Quaternary rockslide near Kanchenjunga, Sikkim Himalayas, India – Implications for extreme events in mountain relief destruction". Geomorphology. 103 (1): 57–65. Bibcode:2009Geomo.103...57W. doi:10.1016/j.geomorph.2007.10.021.
  379. Mika McKinnon (2015). This Is Not A Crater, So What Is It? at space.gizmodo.com
  380. Dietz, R.S.; Fudali, R.; Cassidy, W. (1969). "Richat and Semsiyat Domes (Mauritania): Not Astroblemes". Geological Society of America. 80 (7): 1367–1372. Bibcode:1969GSAB...80.1367D. doi:10.1130/0016-7606(1969)80[1367:rasdmn]2.0.co;2.

Bibliography