Glass wool

Last updated
Glass wool batt insulation Glass wool insulation.jpg
Glass wool batt insulation

Glass wool is an insulating material made from glass fiber arranged using a binder into a texture similar to wool. The process traps many small pockets of air between the glass, and these small air pockets result in high thermal insulation properties. Glass wool is produced in rolls or in slabs, with different thermal and mechanical properties. It may also be produced as a material that can be sprayed or applied in place, on the surface to be insulated. The modern method for producing glass wool was invented by Games Slayter while he was working at the Owens-Illinois Glass Co. (Toledo, Ohio). He first applied for a patent for a new process to make glass wool in 1933. [1]

Contents

Principles of function

Gases possess poor thermal conduction properties compared to liquids and solids [2] [3] and thus make good insulation material if they can be trapped in materials so that much of the heat that flows through the material is forced to flow through the gas. [4] In order to further augment the effectiveness of a gas (such as air) it may be disrupted into small cells which cannot effectively transfer heat by natural convection. Natural convection involves a larger bulk flow of gas driven by buoyancy and temperature differences, and it does not work well in small gas cells where there is little density difference to drive it, and the high surface area to volume ratios of the small cells retards bulk gas flow inside them by means of viscous drag.

In order to accomplish the formation of small gas cells in man-made thermal insulation, glass and polymer materials can be used to trap air in a foam-like structure. The same principle used in glass wool is used in other man-made insulators such as rock wool, Styrofoam, wet suit neoprene foam fabrics, and fabrics such as Gore-Tex and polar fleece. The air-trapping property is also the insulation principle used in nature in down feathers and insulating hair such as natural wool....

Manufacturing process

Natural sand and recycled glass are mixed and heated to 1,450 °C, to produce glass. The fiberglass is usually produced by a method similar to making cotton candy, by forcing it through a fine mesh by centrifugal force, cooling on contact with the air. Cohesion and mechanical strength are obtained by the presence of a binder that “cements” the fibers together. A drop of binder is placed at each fiber intersection. The fiber mat is then heated to around 200 °C to polymerize the resin and is calendered to give it strength and stability. Finally, the wool mat is cut and packed in rolls or panels, palletized, and stored for use.

Uses

Glass wool is a thermal insulation material consisting of intertwined and flexible glass fibers, which causes it to "package" air, resulting in a low density that can be varied through compression and binder content (as noted above, these air cells are the actual insulator). Glass wool can be a loose-fill material, blown into attics, or together with an active binder, sprayed on the underside of structures, sheets, and panels that can be used to insulate flat surfaces such as cavity wall insulation, ceiling tiles, curtain walls, and ducting. It is also used to insulate piping and for soundproofing.

Fiberglass batts and blankets

Installing glass wool batts as ceiling insulation CSIRO ScienceImage 2175 Installing Insulation Batts.jpg
Installing glass wool batts as ceiling insulation

Batts are precut, whereas blankets are available in continuous rolls. Compressing the material reduces its effectiveness. Cutting it to accommodate electrical boxes and other obstructions allows air a free path to cross through the wall cavity. One can install batts in two layers across an unfinished attic floor, perpendicular to each other, for increased effectiveness at preventing heat bridging. Blankets can cover joists and studs as well as the space between them. Batts can be challenging and unpleasant to hang under floors between joists; straps, or staple cloth or wire mesh across joists, can hold it up.

Gaps between batts (bypasses) can become sites of air infiltration or condensation (both of which reduce the effectiveness of the insulation) and require strict attention during the installation. By the same token careful weatherization and installation of vapour barriers is required to ensure that the batts perform optimally. Air infiltration can be also reduced by adding a layer of cellulose loose-fill on top of the material.

Health problems

Fiberglass will irritate the eyes, skin, and the respiratory system. Potential symptoms include irritation of eyes, skin, nose, and throat, dyspnea (breathing difficulty), sore throat, hoarseness and cough. [5] Fiberglass used for insulating appliances appears to produce human disease that is similar to asbestosis. [6] Scientific evidence demonstrates that fiberglass is safe to manufacture, install and use when recommended work practices are followed to reduce temporary mechanical irritation. [7] Unfortunately these work practices are not always followed, and fiberglass is often left exposed in basements that later become occupied. Fiberglass insulation should never be left exposed in an occupied area, according to the American Lung Association.

In June 2011, the United States' National Toxicology Program (NTP) removed from its Report on Carcinogens all biosoluble glass wool used in home and building insulation and for non-insulation products. [8] Similarly, California's Office of Environmental Health Hazard Assessment ("OEHHA"), in November 2011, published a modification to its Proposition 65 listing to include only "Glass wool fibers (inhalable and biopersistent)." [9] The United States' NTP and California's OEHHA action means that a cancer warning label for biosoluble fiber glass home and building insulation is no longer required under Federal or California law. All fiberglass wools commonly used for thermal and acoustical insulation were reclassified by the International Agency for Research on Cancer (IARC) in October 2001 as Not Classifiable as to carcinogenicity to humans (Group 3). [10]

Fiberglass itself is resistant to mold. If mold is found in or on fiberglass it is more likely that the binder is the source of the mold, since binders are often organic and more hygroscopic than the glass wool. In tests, glass wool was found to be highly resistant to the growth of mold. Only exceptional circumstances resulted in mold growth: very high relative humidity, 96% and above, or saturated glass wool, although saturated wool glass will only have moderate growth. [11] [12]

See also

Related Research Articles

<span class="mw-page-title-main">Thermal insulation</span> Minimization of heat transfer

Thermal insulation is the reduction of heat transfer between objects in thermal contact or in range of radiative influence. Thermal insulation can be achieved with specially engineered methods or processes, as well as with suitable object shapes and materials.

<span class="mw-page-title-main">Glass fiber</span> Material consisting of numerous extremely fine fibers of glass

Glass fiber is a material consisting of numerous extremely fine fibers of glass.

Fiberglass or fibreglass is a common type of fiber-reinforced plastic using glass fiber. The fibers may be randomly arranged, flattened into a sheet called a chopped strand mat, or woven into glass cloth. The plastic matrix may be a thermoset polymer matrix—most often based on thermosetting polymers such as epoxy, polyester resin, or vinyl ester resin—or a thermoplastic.

<span class="mw-page-title-main">Mineral wool</span> Fiber made from spun molten minerals

Mineral wool is any fibrous material formed by spinning or drawing molten mineral or rock materials such as slag and ceramics.

<span class="mw-page-title-main">R-value (insulation)</span> Measure of how well an object, per unit of area, resists conductive flow of heat

In the context of construction, the R-value is a measure of how well a two-dimensional barrier, such as a layer of insulation, a window or a complete wall or ceiling, resists the conductive flow of heat. R-value is the temperature difference per unit of heat flux needed to sustain one unit of heat flux between the warmer surface and colder surface of a barrier under steady-state conditions. The measure is therefore equally relevant for lowering energy bills for heating in the winter, for cooling in the summer, and for general comfort.

<span class="mw-page-title-main">Structural insulated panel</span>

A structural insulated panel, or structural insulating panel, (SIP), is a form of sandwich panel used in the construction industry.

A vacuum insulated panel (VIP) is a form of thermal insulation consisting of a gas-tight enclosure surrounding a rigid core, from which the air has been evacuated. It is used in building construction, refrigeration units, and insulated shipping containers to provide better insulation performance than conventional insulation materials.

<span class="mw-page-title-main">Nonwoven fabric</span> Sheet of fibers

Nonwoven fabric is a fabric-like material made from staple fibre (short) and long fibres, bonded together by chemical, mechanical, heat or solvent treatment. The term is used in the textile manufacturing industry to denote fabrics, such as felt, which are neither woven nor knitted. Some non-woven materials lack sufficient strength unless densified or reinforced by a backing. In recent years, non-wovens have become an alternative to polyurethane foam.

<span class="mw-page-title-main">Duct (flow)</span> Conduit used in heating, ventilation, and air conditioning

Ducts are conduits or passages used in heating, ventilation, and air conditioning (HVAC) to deliver and remove air. The needed airflows include, for example, supply air, return air, and exhaust air. Ducts commonly also deliver ventilation air as part of the supply air. As such, air ducts are one method of ensuring acceptable indoor air quality as well as thermal comfort.

<span class="mw-page-title-main">Building insulation</span> Methods of minimizing heat transfer in constructions

Building insulation is material used in a building to reduce the flow of thermal energy. While the majority of insulation in buildings is for thermal purposes, the term also applies to acoustic insulation, fire insulation, and impact insulation. Often an insulation material will be chosen for its ability to perform several of these functions at once.

Ceramic foam is a tough foam made from ceramics. Manufacturing techniques include impregnating open-cell polymer foams internally with ceramic slurry and then firing in a kiln, leaving only ceramic material. The foams may consist of several ceramic materials such as aluminium oxide, a common high-temperature ceramic, and gets insulating properties from the many tiny air-filled voids within the material.

<span class="mw-page-title-main">Building insulation material</span>

Building insulation materials are the building materials which form the thermal envelope of a building or otherwise reduce heat transfer.

<span class="mw-page-title-main">Wool insulation</span>

Wool insulation is made from sheep wool fibres that are either mechanically held together or bonded using between 5% and 20% recycled polyester adhesive to form insulating batts, rolls and ropes. Some companies do not use any adhesives or bonding agents, but rather entangle the wool fibers into in high R-Value, air capturing knops that hold themselves together. Natural wool insulation is effective for both thermal and acoustic insulation. The wool is often sourced from the less expensive black wools of the UK and Europe. Batts are commonly used in the walls and ceilings of timber-frame buildings, rolls can be cut to size for lofts, and ropes can be used between the logs in log homes. Wool knops are installed loosely in attics or in walls as a blow-in-blanket system utilizing a fiber mesh to hold the wool in place during the blow in process.

<span class="mw-page-title-main">Cellulose insulation</span>

Cellulose insulation is plant fiber used in wall and roof cavities to insulate, draught proof and reduce noise. Building insulation in general is low-thermal-conductivity material used to reduce building heat loss and gain and reduce noise transmission.

<span class="mw-page-title-main">Spray foam</span>

Spray foam is a chemical product created by two materials, isocyanate and polyol resin, which react when mixed with each other and expand up to 30-60 times its liquid volume after it is sprayed in place. This expansion makes it useful as a specialty packing material which forms to the shape of the product being packaged and produces a high thermal insulating value with virtually no air infiltration.

<span class="mw-page-title-main">Pipe insulation</span>

Pipe Insulation is thermal or acoustic insulation used on pipework.

<span class="mw-page-title-main">Rigid panel</span>

Rigid panel insulation, also referred to as continuous insulation, can be made from foam plastics such as polyurethane (PUR), polyisocyanurate (PIR), and polystyrene, or from fibrous materials such as fiberglass, rock and slag wool. Rigid panel continuous insulation is often used to provide a thermal break in the building envelope, thus reducing thermal bridging.

Window insulation reduces heat transfer from one side of a window to the other. The U-value is used to refer to the amount of heat that can pass through a window, called thermal transmittance, with a lower score being better. The U-factor of a window can often be found on the rating label of the window.

<span class="mw-page-title-main">Insulated glazing</span> Construction element consisting of at least two glass plates

Insulating glass (IG) consists of two or more glass window panes separated by a space to reduce heat transfer across a part of the building envelope. A window with insulating glass is commonly known as double glazing or a double-paned window, triple glazing or a triple-paned window, or quadruple glazing or a quadruple-paned window, depending upon how many panes of glass are used in its construction.

<span class="mw-page-title-main">Foam glass</span> Porous glass foam material used as a building material

Foam glass is a porous glass foam material. Its advantages as a building material include its light weight, high strength, and thermal and acoustic insulating properties. It is made by heating a mixture of crushed or granulated glass and a blowing agent such as carbon or limestone. Near the melting point of the glass, the blowing agent releases a gas, producing a foaming effect in the glass. After cooling the mixture hardens into a rigid material with gas-filled closed-cell pores comprising a large portion of its volume.

References

  1. US Patent Number 2133235: Method & Apparatus for Making Glass Wool First Slayter glass wool patent, 1933.
  2. Londerville, Stephen; Baukal, Charles E. Jr. (2013-03-25). The Coen & Hamworthy Combustion Handbook: Fundamentals for Power, Marine & Industrial Applications. CRC Press. ISBN   9781439873335.
  3. K, DUTTA, BINAY (2000-01-01). HEAT TRANSFER: PRINCIPLES AND APPLICATIONS. PHI Learning Pvt. Ltd. ISBN   9788120316256.
  4. Gurr, Kevin (2004). Technical Diving: From the Bottom Up. Periscope Publishing Ltd. ISBN   9781904381204.
  5. Labor, United States Department of (2005), Occupational Safety & Health Administration, Chemical Sampling Information, CAS Registry Number: 65997-17-3 (Fibrous Glass).
  6. Kilburn, K H; Powers, D; Warshaw, R H (1 October 1992). "Pulmonary effects of exposure to fine fibreglass: irregular opacities and small airways obstruction". Occupational and Environmental Medicine. 49 (10): 714–720. doi:10.1136/oem.49.10.714. PMC   1012147 . PMID   1419860.
  7. North American Insulation Manufacturers Association ("NAIMA"), Insulation Facts #62 "Health and Safety Facts for Fiber Glass", Pub. No. N040, May 2012.
  8. Department of Health and Human Services (2011), National Institute of Environmental Health Sciences, National toxicology Program, Fact Sheet, "The Report on Carcinogens," June 2011 (PDF), retrieved 2013-02-05
  9. 46-Z California Regulatory Notice Register, P.1878 (November 18, 2011).
  10. IARC Press Release, 24 October 2001 (http://www.iarc.fr/en/media-centre/pr/2001/pr137.html Archived 2013-12-19 at the Wayback Machine )
  11. Block, S. S. (1953). "Humidity Requirements for Mold Growth". Applied Microbiology. 1 (6): 287–293. doi:10.1128/AEM.1.6.287-293.1953. PMC   1056928 . PMID   13105287.
  12. Owens Corning (2007), Fiberglass Thermal Batt, Product Data Sheet (PDF), archived from the original (PDF) on 2012-12-24, retrieved 2012-02-23