Whispering-gallery waves, or whispering-gallery modes, are a type of wave that can travel around a concave surface. Originally discovered for sound waves in the whispering gallery of St Paul's Cathedral, they can exist for light and for other waves, with important applications in nondestructive testing, lasing, cooling and sensing, as well as in astronomy.
Whispering-gallery waves were first explained for the case of St Paul's Cathedral circa 1878 [3] by Lord Rayleigh, who revised a previous misconception [4] [5] that whispers could be heard across the dome but not at any intermediate position. He explained the phenomenon of travelling whispers with a series of specularly reflected sound rays making up chords of the circular gallery. Clinging to the walls the sound should decay in intensity only as the inverse of the distance — rather than the inverse square as in the case of a point source of sound radiating in all directions. This accounts for the whispers being audible all round the gallery.
Rayleigh developed wave theories for St Paul's in 1910 [6] and 1914. [7] Fitting sound waves inside a cavity involves the physics of resonance based on wave interference; the sound can exist only at certain pitches as in the case of organ pipes. The sound forms patterns called modes, as shown in the diagram. [1]
Many other monuments have been shown [8] to exhibit whispering-gallery waves, such as the Gol Gumbaz in Bijapur and the Temple of Heaven in Beijing.
Whispering-gallery waves for sound exist in a wide variety of systems. Examples include the vibrations of the whole Earth [9] or stars. [10]
Such acoustic whispering-gallery waves can be used in nondestructive testing in the form of waves that creep around holes filled with liquid, [11] for example. They have also been detected in solid cylinders [12] and spheres, [13] with applications in sensing, and visualized in motion on microscopic discs . [2] [14]
Whispering gallery waves are more efficiently guided in spheres than in cylinders because the effects of acoustic diffraction (lateral wave spreading) are then completely compensated. [15]
Whispering-gallery waves exist for light waves. [17] [18] [19] They have been produced in microscopic glass spheres or tori [20] [21] and in soap bubbles, [22] for example, with applications as optical resonators for lasing, [23] optomechanical cooling, [24] frequency comb generation [25] and optical sensing. [26] The light waves are guided around almost perfectly by total internal reflection, leading to Q factors in excess of 1010 being achieved. [27] This is far greater than the best values, about 104, that can be obtained in acoustics. [28] Optical modes in a whispering gallery resonator experience some loss due to a mechanism similar to quantum tunneling, even in theoretically ideal conditions. This loss has been known from research on optical waveguide theory and is dubbed tunneling ray attenuation in the field of fiber optics. [29] The Q factor is proportional to the decay time of the waves, which in turn is inversely proportional to both the surface scattering rate and the wave absorption in the medium making up the gallery. Whispering-gallery waves for light have been investigated in chaotic galleries, [30] [31] whose cross-sections deviate from a circle. Such waves have been used in quantum information applications. [32]
Whispering-gallery waves have also been demonstrated for other electromagnetic waves such as radio waves, [33] microwaves, [34] terahertz radiation, [35] infrared radiation, [36] ultraviolet waves [37] and x-rays. [38] More recently, with the rapid development of microfluidic technologies, many integrated whispering gallery mode sensors, by combining the portability of lab‐on‐chip devices and the high sensitivity of whispering gallery mode resonators have emerged. [39] [40] The capabilities of efficient sample handling and multiplexed analyte detection offered by these systems have led to many biological and chemical sensing applications, especially for the detection of single particle or biomolecule. [41] [42]
Whispering-gallery waves have been seen in the form of matter waves for neutrons, [43] and electrons, [44] and they have been proposed as an explanation for vibrations of a single nucleus. [45] Whispering gallery waves have also been observed in the vibrations of soap films as well as in the vibrations of thin plates [46] Analogies of whispering-gallery waves also exist for gravitational waves at the event horizon of black holes. [1] A hybrid of waves of light and electrons known as surface plasmons has been demonstrated in the form of whispering-gallery waves, [47] and likewise for exciton-polaritons in semiconductors. [48] Galleries simultaneously containing both acoustic and optical whispering-gallery waves have also been made, [49] exhibiting very strong mode coupling and coherent effects. [50] Hybrid solid-fluid-optical whispering-gallery structures have been observed as well. [51]
An optical microcavity or microresonator is a structure formed by reflecting faces on the two sides of a spacer layer or optical medium, or by wrapping a waveguide in a circular fashion to form a ring. The former type is a standing wave cavity, and the latter is a traveling wave cavity. The name microcavity stems from the fact that it is often only a few micrometers thick, the spacer layer sometimes even in the nanometer range. As with common lasers, this forms an optical cavity or optical resonator, allowing a standing wave to form inside the spacer layer or a traveling wave that goes around in the ring.
Quantum metrology is the study of making high-resolution and highly sensitive measurements of physical parameters using quantum theory to describe the physical systems, particularly exploiting quantum entanglement and quantum squeezing. This field promises to develop measurement techniques that give better precision than the same measurement performed in a classical framework. Together with quantum hypothesis testing, it represents an important theoretical model at the basis of quantum sensing.
In physics, a nonlinear X-wave (NLX) is a multi-dimensional wave that can travel without distortion.
Dissipative solitons (DSs) are stable solitary localized structures that arise in nonlinear spatially extended dissipative systems due to mechanisms of self-organization. They can be considered as an extension of the classical soliton concept in conservative systems. An alternative terminology includes autosolitons, spots and pulses.
The topological entanglement entropy or topological entropy, usually denoted by , is a number characterizing many-body states that possess topological order.
Within quantum technology, a quantum sensor utilizes properties of quantum mechanics, such as quantum entanglement, quantum interference, and quantum state squeezing, which have optimized precision and beat current limits in sensor technology. The field of quantum sensing deals with the design and engineering of quantum sources and quantum measurements that are able to beat the performance of any classical strategy in a number of technological applications. This can be done with photonic systems or solid state systems.
Patrick A. Lee is a professor of physics at the Massachusetts Institute of Technology (MIT).
Oreste Piro is a dynamical systems theorist and biophysicist. He is at the Universitat de les Illes Balears (UIB) in Palma de Mallorca.
Within quantum cryptography, the Decoy state quantum key distribution (QKD) protocol is the most widely implemented QKD scheme. Practical QKD systems use multi-photon sources, in contrast to the standard BB84 protocol, making them susceptible to photon number splitting (PNS) attacks. This would significantly limit the secure transmission rate or the maximum channel length in practical QKD systems. In decoy state technique, this fundamental weakness of practical QKD systems is addressed by using multiple intensity levels at the transmitter's source, i.e. qubits are transmitted by Alice using randomly chosen intensity levels, resulting in varying photon number statistics throughout the channel. At the end of the transmission Alice announces publicly which intensity level has been used for the transmission of each qubit. A successful PNS attack requires maintaining the bit error rate (BER) at the receiver's end, which can not be accomplished with multiple photon number statistics. By monitoring BERs associated with each intensity level, the two legitimate parties will be able to detect a PNS attack, with highly increased secure transmission rates or maximum channel lengths, making QKD systems suitable for practical applications.
Searches for Lorentz violation involving photons provide one possible test of relativity. Examples range from modern versions of the classic Michelson–Morley experiment that utilize highly stable electromagnetic resonant cavities to searches for tiny deviations from c in the speed of light emitted by distant astrophysical sources. Due to the extreme distances involved, astrophysical studies have achieved sensitivities on the order of parts in 1038.
Christopher Roy Monroe is an American physicist and engineer in the areas of atomic, molecular, and optical physics and quantum information science, especially quantum computing. He directs one of the leading research and development efforts in ion trap quantum computing. Monroe is the Gilhuly Family Presidential Distinguished Professor of Electrical and Computer Engineering and Physics at Duke University and was College Park Professor of Physics at the University of Maryland and Fellow of the Joint Quantum Institute and Joint Center for Quantum Computer Science until 2020 when he moved to Duke. He is also co-founder of IonQ, Inc.
Photonic molecules are a form of matter in which photons bind together to form "molecules". They were first predicted in 2007. Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". In an alternative definition, photons confined to two or more coupled optical cavities also reproduce the physics of interacting atomic energy levels, and have been termed as photonic molecules.
Quantum illumination is a paradigm for target detection that employs quantum entanglement between a signal electromagnetic mode and an idler electromagnetic mode, as well as joint measurement of these modes. The signal mode is propagated toward a region of space, and it is either lost or reflected, depending on whether a target is absent or present, respectively. In principle, quantum illumination can be beneficial even if the original entanglement is completely destroyed by a lossy and noisy environment.
Roberto Morandotti is a physicist and full Professor, working in the Energy Materials Telecommunications Department of the Institut National de la Recherche Scientifique. The work of his team includes the areas of integrated and quantum photonics, nonlinear and singular optics, as well as terahertz photonics.
Hyperuniform materials are characterized by an anomalous suppression of density fluctuations at large scales. More precisely, the vanishing of density fluctuations in the long-wave length limit distinguishes hyperuniform systems from typical gases, liquids, or amorphous solids. Examples of hyperuniformity include all perfect crystals, perfect quasicrystals, and exotic amorphous states of matter.
Kerr frequency combs are optical frequency combs which are generated from a continuous wave pump laser by the Kerr nonlinearity. This coherent conversion of the pump laser to a frequency comb takes place inside an optical resonator which is typically of micrometer to millimeter in size and is therefore termed a microresonator. The coherent generation of the frequency comb from a continuous wave laser with the optical nonlinearity as a gain sets Kerr frequency combs apart from today's most common optical frequency combs. These frequency combs are generated by mode-locked lasers where the dominating gain stems from a conventional laser gain medium, which is pumped incoherently. Because Kerr frequency combs only rely on the nonlinear properties of the medium inside the microresonator and do not require a broadband laser gain medium, broad Kerr frequency combs can in principle be generated around any pump frequency.
Hidetoshi Katori is a Japanese physicist and professor at the University of Tokyo best known for having invented the magic wavelength technique for ultra precise optical lattice atomic clocks. Since 2011, Katori is also Chief Scientist at the Quantum Metrology Lab, RIKEN.
Photonic topological insulators are artificial electromagnetic materials that support topologically non-trivial, unidirectional states of light. Photonic topological phases are classical electromagnetic wave analogues of electronic topological phases studied in condensed matter physics. Similar to their electronic counterparts, they, can provide robust unidirectional channels for light propagation. The field that studies these phases of light is referred to as topological photonics.
Toshiki Tajima is a Japanese theoretical plasma physicist known for pioneering the laser wakefield acceleration technique with John M. Dawson in 1979. The technique is used to accelerate particles in a plasma and was experimentally realized in 1994, for which Tajima received several awards such as the Nishina Memorial Prize (2006), the Enrico Fermi Prize (2015), the Robert R. Wilson Prize (2019), the Hannes Alfvén Prize (2019) and the Charles Hard Townes Award (2020).
John Martin Kolinski is an American engineer. He is a professor at EPFL and the head of the Laboratory of Engineering Mechanics of Soft Interfaces (EMSI) at EPFL's School of Engineering.