Buzzer

Last updated

A buzzer or beeper is an audio signaling device, [1] which may be mechanical, electromechanical, or piezoelectric (piezo for short). Typical uses of buzzers and beepers include alarm devices, timers, train and confirmation of user input such as a mouse click or keystroke.

Contents

History

Electromechanical

The electric buzzer was invented in 1831 by Joseph Henry. They were mainly used in early doorbells until they were phased out in the early 1930s in favor of musical chimes, which had a softer tone. [2]

Piezoelectric

Piezoelectric buzzers, or piezo buzzers, as they are sometimes called, were invented by Japanese manufacturers and fitted into a wide array of products during the 1970s to 1980s. This advancement mainly came about because of cooperative efforts by Japanese manufacturing companies. In 1951, they established the Barium Titanate Application Research Committee, which allowed the companies to be "competitively cooperative" and bring about several piezoelectric innovations and inventions. [3]

Types

Electromechanical

Early devices were based on an electromechanical system identical to an electric bell without the metal gong. Similarly, a relay may be connected to interrupt its own actuating current, causing the contacts to buzz (the contacts buzz at line frequency if powered by alternating current) Often these units were anchored to a wall or ceiling to use it as a sounding board. The word "buzzer" comes from the rasping noise that electromechanical buzzers made.

Mechanical

A joy buzzer is an example of a purely mechanical buzzer and they require drivers. Other examples of them are doorbells.

Piezoelectric

Piezoelectric disk beeper 2007-07-24 Piezoelectric buzzer.jpg
Piezoelectric disk beeper

A piezoelectric element may be driven by an oscillating electronic circuit or other audio signal source, driven with a piezoelectric audio amplifier. Sounds commonly used to indicate that a button has been pressed are a click, a ring or a beep.

Interior of a readymade loudspeaker, showing a piezoelectric-disk-beeper (With 3 electrodes ... including 1 feedback-electrode ( the central, small electrode joined with red wire in this photo), and an oscillator to self-drive the buzzer. Buzzer interior.JPG
Interior of a readymade loudspeaker, showing a piezoelectric-disk-beeper (With 3 electrodes ... including 1 feedback-electrode ( the central, small electrode joined with red wire in this photo), and an oscillator to self-drive the buzzer.

A piezoelectric buzzer/beeper also depends on acoustic cavity resonance or Helmholtz resonance to produce an audible beep. [4]

Modern applications

While technological advancements have caused buzzers to be impractical and undesirable[ citation needed ], there are still instances in which buzzers and similar circuits may be used. Present day applications include:

See also

Related Research Articles

<span class="mw-page-title-main">Piezoelectricity</span> Electric charge generated in certain solids due to mechanical stress

Piezoelectricity is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived from Ancient Greek πιέζω (piézō) 'to squeeze or press', and ἤλεκτρον (ḗlektron) 'amber'. The German form of the word (Piezoelektricität) was coined in 1881 by the German physicist Wilhelm Gottlieb Hankel; the English word was coined in 1883.

<span class="mw-page-title-main">Loudspeaker</span> Converts an electrical audio signal into a corresponding sound

A loudspeaker is an electroacoustic transducer that converts an electrical audio signal into a corresponding sound. A speaker system, also often simply referred to as a speaker or loudspeaker, comprises one or more such speaker drivers, an enclosure, and electrical connections possibly including a crossover network. The speaker driver can be viewed as a linear motor attached to a diaphragm which couples that motor's movement to motion of air, that is, sound. An audio signal, typically from a microphone, recording, or radio broadcast, is amplified electronically to a power level capable of driving that motor in order to reproduce the sound corresponding to the original unamplified electronic signal. This is thus the opposite function to the microphone; indeed the dynamic speaker driver, by far the most common type, is a linear motor in the same basic configuration as the dynamic microphone which uses such a motor in reverse, as a generator.

<span class="mw-page-title-main">Timer</span> Type of clock

A timer or countdown timer is a type of clock that starts from a specified time duration and stops when reaching zero. A simple timer is an hourglass. Commonly, a timer would raise an alarm when it ends. It can be implemented as hardware or software. Stopwatches operate in the opposite direction, upwards from zero, measuring elapsed time since a given time instant. Time switches are timers that control an electric switch.

A beeper is a device that makes a beep sound.

<span class="mw-page-title-main">Joy buzzer</span> Practical joke device

A joy buzzer is a practical joke device that consists of a coiled mainspring inside a disc worn in the palm of the hand. When the wearer shakes hands with another person, a button on the disc releases the spring, which rapidly unwinds creating a vibration which mimics an electric shock to the unsuspecting victim.

<span class="mw-page-title-main">Doorbell</span> Signaling device placed near an entry door to a building

A doorbell is a signaling device typically placed near a door to a building's entrance. When a visitor presses a button, the bell rings inside the building, alerting the occupant to the presence of the visitor. Although the first doorbells were mechanical, activated by pulling a cord connected to a bell, modern doorbells are electric, operated by a pushbutton switch. Modern doorbells often incorporate intercoms and miniature video cameras to increase security.

<span class="mw-page-title-main">Alarm clock</span> Type of clock

An alarm clock or alarm is a clock that is designed to alert an individual or group of people at a specified time. The primary function of these clocks is to awaken people from their night's sleep or short naps; they can sometimes be used for other reminders as well. Most alarm clocks make sounds; some make light or vibration. Some have sensors to identify when a person is in a light stage of sleep, in order to avoid waking someone who is deeply asleep, which causes tiredness, even if the person has had adequate sleep. To turn off the sound or light, a button or handle on the clock is pressed; most clocks automatically turn off the alarm if left unattended long enough. A classic analog alarm clock has an extra hand or inset dial that is used to show the time at which the alarm will ring. Alarm clock functions are also used in mobile phones, watches, and computers.

<span class="mw-page-title-main">Pickup (music technology)</span> Captures vibrations produced by musical instruments

A pickup is a transducer that captures or senses mechanical vibrations produced by musical instruments, particularly stringed instruments such as the electric guitar, and converts these to an electrical signal that is amplified using an instrument amplifier to produce musical sounds through a loudspeaker in a speaker enclosure. The signal from a pickup can also be recorded directly.

<span class="mw-page-title-main">Fire alarm control panel</span> Controlling component of a fire alarm system

A fire alarm control panel (FACP), fire alarm control unit (FACU), fire indicator panel (FIP), or simply fire alarm panel is the controlling component of a fire alarm system. The panel receives information from devices designed to detect and report fires, monitors their operational integrity, and provides for automatic control of equipment, and transmission of information necessary to prepare the facility for fire based on a predetermined sequence. The panel may also supply electrical energy to operate any associated initiating device, notification appliance, control, transmitter, or relay. There are four basic types of panels: coded panels, conventional panels, addressable panels, and multiplex systems.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance.

<span class="mw-page-title-main">Electric bell</span> Mechanical bell that functions by means of an electromagnet

An electric bell is a mechanical or electronic bell that functions by means of an electromagnet. When an electric current is applied, it produces a repetitive buzzing, clanging or ringing sound. Electromechanical bells have been widely used at railroad crossings, in telephones, fire and burglar alarms, as school bells, doorbells, and alarms in industrial areas, since the late 1800s, but they are now being widely replaced with electronic sounders. An electric bell consists of one or more electromagnets, made of a coil of insulated wire around an iron bar, which attract an iron strip armature with a clapper.

<span class="mw-page-title-main">Helmholtz resonance</span> Phenomenon of air resonance in a cavity

Helmholtz resonance, also known as wind throb, refers to the phenomenon of air resonance in a cavity, an effect named after the German physicist Hermann von Helmholtz. This type of resonance occurs when air is forced in and out of a cavity, causing the air inside to vibrate at a specific natural frequency. The principle is widely observable in everyday life, notably when blowing across the top of a bottle, resulting in a resonant tone.

<span class="mw-page-title-main">Piezoelectric sensor</span> Type of sensor

A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix piezo- is Greek for 'press' or 'squeeze'.

<span class="mw-page-title-main">Vandal-resistant switch</span>

Vandal-resistant switches are electrical switches designed to be installed in a location and application where they may be subject to abuse and attempts to damage them, as in the case of pedestrian crossing switches. Vandal-resistant switches located on devices that are outdoors must be able to withstand extreme temperatures, dust, rain, snow, and ice. Many vandal-resistant switches are intended to be operated by the general public, and must withstand heavy use and even abuse, such as attempts to damage the switch with metal tools. These switches must also resist dirt and moisture.

<span class="mw-page-title-main">Bell box</span> Audible device

A bell box is an audible device, often electric, which when activated, emits a chime, bell, or buzzer sound.

<span class="mw-page-title-main">Mechanical filter</span> Type of signal processing filter

A mechanical filter is a signal processing filter usually used in place of an electronic filter at radio frequencies. Its purpose is the same as that of a normal electronic filter: to pass a range of signal frequencies, but to block others. The filter acts on mechanical vibrations which are the analogue of the electrical signal. At the input and output of the filter, transducers convert the electrical signal into, and then back from, these mechanical vibrations.

<span class="mw-page-title-main">Electromechanics</span> Multidisciplinary field of engineering

In engineering, electromechanics combines processes and procedures drawn from electrical engineering and mechanical engineering. Electromechanics focuses on the interaction of electrical and mechanical systems as a whole and how the two systems interact with each other. This process is especially prominent in systems such as those of DC or AC rotating electrical machines which can be designed and operated to generate power from a mechanical process (generator) or used to power a mechanical effect (motor). Electrical engineering in this context also encompasses electronics engineering.

A back-up beeper, also known as back-up alarm or vehicle motion alarm, is a device intended to warn passers-by of a vehicle moving in reverse. Some models produce pure tone beeps at about 1000 Hz and 97-112 decibels.

<span class="mw-page-title-main">Piezoelectric speaker</span> Type of loudspeaker

A piezoelectric speaker is a loudspeaker that uses the piezoelectric effect for generating sound. The initial mechanical motion is created by applying a voltage to a piezoelectric material, and this motion is typically converted into audible sound using diaphragms and resonators. The prefix piezo- is Greek for 'press' or 'squeeze'.

A piezoelectric microelectromechanical system (piezoMEMS) is a miniature or microscopic device that uses piezoelectricity to generate motion and carry out its tasks. It is a microelectromechanical system that takes advantage of an electrical potential that appears under mechanical stress. PiezoMEMS can be found in a variety of applications, such as switches, inkjet printer heads, sensors, micropumps, and energy harvesters.

References

  1. "buzzer - definition of buzzer by The Free Dictionary" . Retrieved 22 May 2015.
  2. "The History of the Doorbell by 1800doorbell.com". www.1800doorbell.com. Retrieved 2015-07-12.
  3. "Piezo Systems: History of Piezoelectricity". www.piezo.com. Archived from the original on 2013-10-11. Retrieved 2015-07-12.
  4. "Design of a Helmholtz Chamber - PUI Audio | A Projects Unlimited Company located in Dayton, Ohio".