Magnetic amplifier

Last updated
Magnetic amplifier
Magnetic Amplifier.jpg
A small magnetic amplifier rated at 250 watts and designed to operate on 120 VAC, 60 Hz. The large center winding is the control winding.

The magnetic amplifier (colloquially known as a "mag amp") is an electromagnetic device for amplifying electrical signals. The magnetic amplifier was invented early in the 20th century, and was used as an alternative to vacuum tube amplifiers where robustness and high current capacity were required. World War II Germany perfected this type of amplifier, and it was used in the V-2 rocket. The magnetic amplifier was most prominent in power control and low-frequency signal applications from 1947 to about 1957, when the transistor began to supplant it. [1] The magnetic amplifier has now been largely superseded by the transistor-based amplifier, except in a few safety critical, high-reliability or extremely demanding applications. Combinations of transistor and mag-amp techniques are still used.

Contents

Principle of operation

A saturable reactor, illustrating the principle of a magnetic amplifier Magnetic amplifier.svg
A saturable reactor, illustrating the principle of a magnetic amplifier

Visually a mag amp device may resemble a transformer, but the operating principle is quite different from a transformer – essentially the mag amp is a saturable reactor. It makes use of magnetic saturation of the core, a non-linear property of a certain class of transformer cores. For controlled saturation characteristics, the magnetic amplifier employs core materials that have been designed to have a specific B-H curve shape that is highly rectangular, in contrast to the slowly tapering B-H curve of softly saturating core materials that are often used in normal transformers.

The typical magnetic amplifier consists of two physically separate but similar transformer magnetic cores, each of which has two windings: a control winding and an AC winding. Another common design uses a single core shaped like the number "8" with one control winding and two AC windings as shown in the photo above. A small DC current from a low-impedance source is fed into the control winding. The AC windings may be connected either in series or in parallel, the configurations resulting in different types of mag amps. The amount of control current fed into the control winding sets the point in the AC winding waveform at which either core will saturate. In saturation, the AC winding on the saturated core will go from a high-impedance state ("off") into a very low-impedance state ("on") – that is, the control current controls the point at which voltage the mag amp switches "on".

A relatively small DC current on the control winding is able to control or switch large AC currents on the AC windings. This results in current amplification.

Two magnetic cores are used because the AC current will generate high voltage in the control windings. By connecting them in opposite phase, the two cancel each other, so that no current is induced in the control circuit. The alternate design shown above with the "8" shaped core accomplishes this same objective magnetically.

Strengths

The magnetic amplifier is a static device with no moving parts. It has no wear-out mechanism and has a good tolerance to mechanical shock and vibration. It requires no warm-up time. [2] Multiple isolated signals may be summed by additional control windings on the magnetic cores. The windings of a magnetic amplifier have a higher tolerance to momentary overloads than comparable solid-state devices. The magnetic amplifier is also used as a transducer in applications such as current measurement and the flux gate compass. The reactor cores of magnetic amplifiers withstand neutron radiation extremely well. [3] For this special reason magnetic amplifiers have been used in nuclear power applications. [4]

Limitations

The gain available from a single stage is limited and low compared to electronic amplifiers. Frequency response of a high-gain amplifier is limited to about one-tenth the excitation frequency, although this is often mitigated by exciting magnetic amplifiers with currents at higher than utility frequency. [1] Solid-state electronic amplifiers can be more compact and efficient than magnetic amplifiers. The bias and feedback windings are not unilateral and may couple energy back from the controlled circuit into the control circuit. This complicates the design of multistage amplifiers when compared with electronic devices. [1]

Magnetic amplifier output waveform (violet) at about 50% saturation. Input (yellow) is 120 VAC 60 Hz. MagAmp1.jpg
Magnetic amplifier output waveform (violet) at about 50% saturation. Input (yellow) is 120 VAC 60 Hz.
Magnetic amplifier output waveform frequency spectrum MagAmp4.jpg
Magnetic amplifier output waveform frequency spectrum

Magnetic amplifiers introduce substantial harmonic distortion to the output waveform consisting entirely of the odd harmonics. Unlike the silicon controlled rectifiers or TRIACs which replaced them, the magnitude of these harmonics decreases rapidly with frequency so interference with nearby electronic devices such as radio receivers is uncommon.

Applications

Magnetic amplifiers were important as modulation and control amplifiers in the early development of voice transmission by radio. [2] A magnetic amplifier was used as voice modulator for a 2 kilowatt Alexanderson alternator, and magnetic amplifiers were used in the keying circuits of large high-frequency alternators used for radio communications. Magnetic amplifiers were also used to regulate the speed of Alexanderson alternators to maintain the accuracy of the transmitted radio frequency. [2] Magnetic amplifiers were used to control large high-power alternators by turning them on and off for telegraphy or to vary the signal for voice modulation. The alternator's frequency limits were rather low to where a frequency multiplier had to be utilized to generate higher radio frequencies than the alternator was capable of producing. Even so, early magnetic amplifiers incorporating powdered-iron cores were incapable of producing radio frequencies above approximately 200 kHz. Other core materials, such as ferrite cores and oil-filled transformers, would have to be developed to allow the amplifier to produce higher frequencies.

The ability to control large currents with small control power made magnetic amplifiers useful for control of lighting circuits, for stage lighting and for advertising signs. Saturable reactor amplifiers were used for control of power to industrial furnaces. [2] Magnetic amplifiers as variable AC voltage controllers have been mostly replaced by silicon controlled rectifiers or TRIACs. Magnetic amplifiers are still used in some arc welders.

Small magnetic amplifiers were used for radio tuning indicators, control of small motor and cooling fan speed, control of battery chargers.

Magnetic amplifiers were used extensively as the switching element in early switched-mode (SMPS) power supplies, [5] as well as in lighting control. Semiconductor-based solid-state switches have largely superseded them, though recently there has been some regained interest in using mag amps in compact and reliable switching power supplies. PC ATX power supplies often use mag amps for secondary side voltage regulation. Cores designed specifically for switch mode power supplies are currently manufactured by several large electromagnetics companies, including Metglas and Mag-Inc.

Magnetic amplifiers were used by locomotives to detect wheel slip, until replaced by Hall effect current transducers. The cables from two traction motors passed through the core of the device. During normal operation the resultant flux was zero as both currents were the same and in opposite directions. The currents would differ during wheel slip, producing a resultant flux that acted as the Control winding, developing a voltage across a resistor in series with the AC winding which was sent to the wheel slip correction circuits.

Magnetic amplifiers can be used for measuring high DC-voltages without direct connection to the high voltage and are therefore still used in the HVDC-technique. The current to be measured is passed through the two cores, possibly by a solid bus bar. There is almost no voltage drop in this bus bar. The output signal, proportional to the ampere turns in the control current bus bar, is derived from the alternating excitation voltage of the magnetic amplifier, there is no voltage created or induced on the bus bar. The output signal has only a magnetic connection with the bus bar so the bus may be, quite safely, at any (EHT) voltage with respect to the instrumentation.

Instrumentation magnetic amplifiers are commonly found on space craft where a clean electromagnetic environment is highly desirable. [ citation needed ]

The German Kriegsmarine made extensive use of the magnetic amplifiers. They were used for the master stable element systems, for slow moving transmission for controlling guns, directors and rangefinders and train and elevation controls. Magnetic amplifiers were used in aircraft systems (avionics) before the advent of high reliability semiconductors. They were important in implementing early autoland systems and Concorde made use of the technology for the control of its engine air intakes before development of a system using digital electronics. Magnetic amplifiers were used in stabilizer controls of V2 rockets.

Usage in computing

Magnetic amplifiers were widely studied during the 1950s as a potential switching element for mainframe computers. Like transistors, mag amps were somewhat smaller than the typical vacuum tube, and had the significant advantage that they were not subject to "burning out" and thus had dramatically lower maintenance requirements. Another advantage is that a single mag amp could be used to sum several inputs in a single core, which was useful in the arithmetic logic unit (ALU) as it could greatly reduce the component count. Custom tubes could do the same, but transistors could not, so the mag amp was able to combine the advantages of tubes and transistors in an era when the latter were expensive and unreliable.

The principles of magnetic amplifiers were applied non linearly to create magnetic digital logic gates. That era was short, lasting from the mid-1950s to about 1960, when new fabrication techniques produced great improvements in transistors and dramatically lowered their cost. Only one large-scale mag amp machine was put into production, the UNIVAC Solid State, but a number of contemporary late-1950s/early-1960s computers used the technology, like the Ferranti Sirius, Ferranti Orion and the English Electric KDF9, or the one-off MAGSTEC.

History

Early development

A voltage source and a series connected variable resistor may be regarded as a direct current signal source for a low resistance load such as the control coil of a saturable reactor which amplifies the signal. Thus, in principle, a saturable reactor is already an amplifier, although before 20th century they were used for simple tasks, such as controlling lighting and electrical machinery as early as 1885. [6] [7] [8]

In 1904 radio pioneer Reginald Fessenden placed an order for a high frequency rotary mechanical alternator from the General Electric Company capable of generate AC at a frequency of 100 kHz to be used for continuous wave radio transmission over great distances. [9] [10] The design job was given to General Electric engineer Ernst F. Alexanderson who developed the 2 kW Alexanderson alternator. By 1916 Alexanderson added a magnetic amplifier to control the transmission of these rotary alternators for transoceanic radio communication. [11] [12]

The experimental telegraphy and telephony demonstrations made during 1917 attracted the attention of the US Government, especially in light of partial failures in the transoceanic cable across the Atlantic Ocean. The 50 kW alternator was commandeered by the US Navy and put into service in January 1918 and was used until 1920, when a 200 kW generator-alternator set was built and installed.

Usage in electric power generation

Magnetic amplifiers were extensively used in electricity power generation from the early 1960s onwards. They provided the small signal amplification for generator automatic voltage regulation (AVR) from a small error signal at milliwatt (mW) level to 100 kilowatt (kW) level. This was in turn converted by a rotating machine (exciter) to 5 megawatt (MW) level, the excitation power required by a typical 500 MW Power Plant Turbine Generator Unit. They proved durable and reliable. Many are recorded in service through the mid-1990s and some are still in use at older generating stations, notably in hydroelectric plants operating in northern California.

Misnomer uses

A real magnetic audio amplifier, designed by Swedish engineer Lars Lundahl, utilizes saturable reactors in its final power amplifying stage. Lundahl MagAmp schematic.png
A real magnetic audio amplifier, designed by Swedish engineer Lars Lundahl, utilizes saturable reactors in its final power amplifying stage.

In the 1970s, Robert Carver designed and produced several high quality high-powered audio amplifiers, calling them magnetic amplifiers. In fact, they were in most respects conventional audio amplifier designs with unusual power supply circuits. They were not magnetic amplifiers as defined in this article. They should not be confused with real magnetic audio amplifiers.

See also

Related Research Articles

<span class="mw-page-title-main">Electromagnetic coil</span> Electrical component

An electromagnetic coil is an electrical conductor such as a wire in the shape of a coil. Electromagnetic coils are used in electrical engineering, in applications where electric currents interact with magnetic fields, in devices such as electric motors, generators, inductors, electromagnets, transformers, sensor coils such as in medical MRI imaging machines. Either an electric current is passed through the wire of the coil to generate a magnetic field, or conversely, an external time-varying magnetic field through the interior of the coil generates an EMF (voltage) in the conductor.

<span class="mw-page-title-main">Amplifier</span> Electronic device/component that increases the strength of a signal

An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal. It is a two-port electronic circuit that uses electric power from a power supply to increase the amplitude of a signal applied to its input terminals, producing a proportionally greater amplitude signal at its output. The amount of amplification provided by an amplifier is measured by its gain: the ratio of output voltage, current, or power to input. An amplifier is defined as a circuit that has a power gain greater than one.

<span class="mw-page-title-main">Inductor</span> Passive two-terminal electrical component that stores energy in its magnetic field

An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when an electric current flows through it. An inductor typically consists of an insulated wire wound into a coil.

<span class="mw-page-title-main">Transformer</span> Device to couple energy between circuits

In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

<span class="mw-page-title-main">Alternator</span> Device converting mechanical into electrical energy

An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually, the term refers to small rotating machines driven by automotive and other internal combustion engines.

<span class="mw-page-title-main">Balun</span> Electrical device

A balun is an electrical device that allows balanced and unbalanced lines to be interfaced without disturbing the impedance arrangement of either line. A balun can take many forms and may include devices that also transform impedances but need not do so. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than rejecting, common mode signals.

<span class="mw-page-title-main">Valve amplifier</span> Type of electronic amplifier

A valve amplifier or tube amplifier is a type of electronic amplifier that uses vacuum tubes to increase the amplitude or power of a signal. Low to medium power valve amplifiers for frequencies below the microwaves were largely replaced by solid state amplifiers in the 1960s and 1970s. Valve amplifiers can be used for applications such as guitar amplifiers, satellite transponders such as DirecTV and GPS, high quality stereo amplifiers, military applications and very high power radio and UHF television transmitters.

<span class="mw-page-title-main">Voltage regulator</span> System designed to maintain a constant voltage

A voltage regulator is a system designed to automatically maintain a constant voltage. It may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.

<span class="mw-page-title-main">Grimeton Radio Station</span> Historic Swedish wireless telegraphy station

Grimeton Radio Station in southern Sweden, close to Varberg in Halland, is an early longwave transatlantic wireless telegraphy station built in 1922–1924, that has been preserved as a historical site. From the 1920s through the 1940s it was used to transmit telegram traffic by Morse code to North America and other countries, and during World War II was Sweden's only telecommunication link with the rest of the world. It is the only remaining example of an early pre-electronic radio transmitter technology called an Alexanderson alternator. It was added to the UNESCO World Heritage List in 2004, with the statement: "Grimeton Radio Station, Varberg is an exceptionally well preserved example of a type of telecommunication centre, representing the technological achievements by the early 1920s, as well as documenting the further development over some three decades." The radio station is also an anchor site for the European Route of Industrial Heritage. The transmitter is still in operational condition, and each year on a day called Alexanderson Day is started up and transmits brief Morse code test transmissions, which can be received all over Europe.

<span class="mw-page-title-main">HVDC converter station</span> Type of substation

An HVDC converter station is a specialised type of substation which forms the terminal equipment for a high-voltage direct current (HVDC) transmission line. It converts direct current to alternating current or the reverse. In addition to the converter, the station usually contains:

<span class="mw-page-title-main">Alexanderson alternator</span> High-frequency AC generator for radio transmission

An Alexanderson alternator is a rotating machine, developed by Ernst Alexanderson beginning in 1904, for the generation of high-frequency alternating current for use as a radio transmitter. It was one of the first devices capable of generating the continuous radio waves needed for transmission of amplitude modulated (AM) signals by radio. It was used from about 1910 in a few "superpower" longwave radiotelegraphy stations to transmit transoceanic message traffic by Morse code to similar stations all over the world.

<span class="mw-page-title-main">Saturable reactor</span>

A saturable reactor in electrical engineering is a special form of inductor where the magnetic core can be deliberately saturated by a direct electric current in a control winding. Once saturated, the inductance of the saturable reactor drops dramatically. This decreases inductive reactance and allows increased flow of the alternating current (AC).

<span class="mw-page-title-main">Welding power supply</span>

A welding power supply is a device that provides or modulates an electric current to perform arc welding. There are multiple arc welding processes ranging from Shielded Metal Arc Welding (SMAW) to inert shielding gas like Gas metal arc welding (GMAW) or Gas tungsten arc welding (GTAW). Welding power supplies primarily serve as devices that allow a welder to exercise control over whether current is alternating current (AC) or direct current (DC), as well as the amount of current and voltage.

<span class="mw-page-title-main">Electronic component</span> Discrete device in an electronic system

An electronic component is any basic discrete electronic device or physical entity part of an electronic system used to affect electrons or their associated fields. Electronic components are mostly industrial products, available in a singular form and are not to be confused with electrical elements, which are conceptual abstractions representing idealized electronic components and elements. A datasheet for an electronic component is a technical document that provides detailed information about the component's specifications, characteristics, and performance. Discrete circuits are made of individual electronic components that only perform one function each as packaged, which are known as discrete components, although strictly the term discrete component refers to such a component with semiconductor material such as individual transistors.

<span class="mw-page-title-main">Choke (electronics)</span> Inductor used as a low-pass filter

In electronics, a choke is an inductor used to block higher-frequency alternating currents (AC) while passing direct current (DC) and lower-frequency ACs in a circuit. A choke usually consists of a coil of insulated wire often wound on a magnetic core, although some consist of a doughnut-shaped ferrite bead strung on a wire. The choke's impedance increases with frequency. Its low electrical resistance passes both AC and DC with little power loss, but its reactance limits the amount of AC passed.

<span class="mw-page-title-main">Amplidyne</span> Electromechanical amplifier

An amplidyne is an obsolete electromechanical amplifier invented prior to World War II by Ernst Alexanderson. It consists of an electric motor driving a DC generator. The signal to be amplified is applied to the generator's field winding, and its output voltage is an amplified copy of the field current. The amplidyne was used in industry in high power servo and control systems, to amplify low power control signals to control powerful electric motors, for example. It is now mostly obsolete.

<span class="mw-page-title-main">Transformer types</span> Overview of electrical transformer types

Various types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

A Royer oscillator is an electronic relaxation oscillator that employs a saturable-core transformer in the main power path. It was invented and patented in April 1954 by Richard L. Bright & George H. Royer, who are listed as co-inventors on the patent. It has the advantages of simplicity, low component count, rectangle waveforms, and transformer isolation. As well as being an inverter, it can be used as a galvanically-isolated DC-DC converter when the transformer output winding is connected to a suitable rectifying stage, in which case the resulting apparatus is usually called a "Royer Converter".

<span class="mw-page-title-main">Current sensing</span>

In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current value may be directly displayed by an instrument, or converted to digital form for use by a monitoring or control system.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

References

  1. 1 2 3 Westman, H.P. (1968). "Ch. 14". Reference Data for Radio Engineers (5th ed.). H. W. Sams. ISBN   9780672206788. LCCN   43-14665. OCLC   0672206781.
  2. 1 2 3 4 Storm, H.F. (1955). Magnetic Amplifiers. Howard W. Sams photofact publication; FMA-1. Wiley. p. 383. hdl:2027/pst.000030030824. OCLC   895109162.
  3. Lynn, Gordon E.; Pula, Thaddeus J.; Ringelman, John F.; Timmel, Frederick G. (1960). "Effects on Nuclear Radiation on Magnetic Materials". Self-saturating Magnetic Amplifiers. New York: McGraw-Hill. LCCN   60-6979. The nature of ferromagnetic materials results in far less damage from nuclear radiation than is done to semiconductor materials. … One study devoted to the problem indicates that the major damage to core material suitable for self-saturating magnetic amplifiers consists of loss of loop rectangularity and increased dynamic coercive force. This study was made at a total integrated neutron flux of 2.7 ✕ neutrons/.
  4. Gilmore, Ken (July 1960). "Magnetic Amplifiers – how they work and what they do" (PDF). Popular Electronics. 13 (1): 71–75, 109. Retrieved 2014-10-20. The electronic watchdogs that keep the Triton's powerful nuclear plant operating without a hitch are magnetic amplifiers – almost hundred of them are used for this critical job.
  5. Pressman, Abraham I. (1997). Switching Power Supply Design. McGraw-Hill. ISBN   0-07-052236-7.
  6. Electronics Design and Development Division (May 1954) [1951]. "History". Magnetic Amplifiers – A Rising Star in Naval Electronics. Washington, D.C.: Bureau of Ships, Department of the Navy. p. 2. NAVSHIPS 900,172. The magnetic amplifier is not new – the principles of the saturable core control were used in electrical machinery as early as 1885 although they were not identified as such.
  7. Mali, Paul (August 1960). "Introduction" (PDF). Magnetic Amplifiers – Principles and Applications. New York: John F. Rider Publisher. p. 1. Library of Congress Catalog Number 60-12440. Archived from the original (PDF) on 2006-11-14. Retrieved 2010-09-19. Magnetic amplifiers were developed as early as 1885 in the United States. At that time they were known as saturable reactors and were used primarily in electrical machinery and in theater lighting.
  8. Kemp, Barron (August 1962). "Magnetic Amplifiers". Fundamentals of Magnetic Amplifiers. H. W. Sams. p. 7. LCCN   62-19650. The use of magnetic forces for amplification is not new; a survey of its history shows that although the device was not known as a magnetic amplifier at the time, it was used in electrical machinery as early as 1885.
  9. "Ernst F. Alexanderson, The accomplishments and life of E. F. Alexanderson, 1878–1975". Edison Tech Center. 2014.
  10. Milestones:Alexanderson Radio Alternator, 1904
  11. Wilson, Thomas G. (1999). "The Evolution of Power Electronics". Fourteenth Annual Applied Power Electronics Conference and Exposition, 1999. APEC '99. Vol. 1. pp. 3–9. doi:10.1109/APEC.1999.749482. ISBN   978-0-7803-5160-8. S2CID   117592132.
  12. Trinkaus 2006