Network protector

Last updated

A network protector is a type of electric protective device used in electricity distribution systems. The network protector automatically disconnect its associated distribution transformer from the secondary network when the power starts flowing in reverse direction. Network protectors are used on both spot networks and grid networks. The secondary grid system improves continuity of service for customers, since multiple sources are available to supply the load; a fault with any one supply is automatically isolated by the network protector and does not interrupt service from the other sources. Secondary grids are often used in downtown areas of cities where there are many customers in a small area.

Contents

Operation

Typically the network protector is set to close when the voltage difference and phase angle are such that the transformer will supply power to the secondary grid, and is set to open when the secondary grid would back-feed through the transformer and supply power to the primary circuit.

Network protectors typically have three settings, "automatic", "open", and "close". The top side is fed from multiple protectors and is always energized unless all units on a spot network are in the open position. Grid units will always be energized on the top side from the many other units tied into the grid. A spot network is 2 or more transformers dedicated to a single customer. The grid feeds multiple customers. A network protector has a circuit breaker set of contacts and a controlling protection relay. The components are enclosed in a protective housing; some network protectors are installed on transformers below grade and must be in water-resistant enclosures. The mechanism contains electrical and mechanical parts to switch open and close the secondary contacts. The controlling relay monitors voltage and current in the transformer, and opens or closes the contact mechanism through electrical signals. The relay uses a power/time curve so that small, short term reverse power flow (such as from elevator hoists) are ignored. Spot units will be 277/480 and the grid units will be 120/208.

Application

The network protector does not protect the (secondary) network cable from overload. The network protector is installed to protect the stability and reliability of the secondary grid by preventing power flow away from the customers and into the primary feeders.

If there is a fault on the primary feeder, the substation circuit-breaker is meant to open, disconnecting the primary feeder from one side. The problem is that this primary cable is also connected to a network transformer, which is interconnected to other network transformers on its secondary side. The secondary network will energize the primary feeder through the network transformer. This can be very dangerous, because a fault will continue to be 'fed' from the secondary network side of transformer. Even without a fault, if the electric utility wants to perform maintenance on that primary cable, they must have a way to fully disconnect that primary cable, without worrying about the cable being energized by the secondary network through the network transformer. Thus, the network protector is designed to open its contacts if the relay senses backwards flowing current.

However, if there is a fault on the secondary grid, the network protector is not designed to open its contacts up. The secondary fault will continue to be fed from the primary side of the system. In some cases, networks are designed with cable limiters (like fuses) to melt and disconnect the secondary fault under the right conditions. In other cases, the utility lets cable 'burn clear', in which case the fault is allowed to remain fed until the cables fuse, then the fault is isolated.

Analysis of the system is required to ensure that the system can, indeed, supply enough current to fuse the cables, wherever the fault is. This method tends to work well at 120 volts, but it is less reliable at higher voltages. The danger in depending on the cable to 'burn clear' is that some conditions will not cause the cable to burn in this manner and instead, the entire section of cable can be damaged from excessive, long-term overloading, causing fires and damage to the secondary network.

Typically, network protectors are contained inside a submersible enclosure which is bolted to the throat of the network transformer and placed in underground vaults. IEEE standard C57.12.44 covers network protectors.

See also

Related Research Articles

Electric power distribution Final stage of electricity delivery to individual consumers in a power grid

Electric power distribution is the final stage in the delivery of electric power; it carries electricity from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 35 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

Circuit breaker Automatic circuit protection device

A circuit breaker is an electrical safety device designed to protect an electrical circuit from damage caused by an overcurrent or short circuit. Its basic function is to interrupt current flow to protect equipment and to prevent the risk of fire. Unlike a fuse, which operates once and then must be replaced, a circuit breaker can be reset to resume normal operation.

Electrical substation Part of an electrical generation, transmission, and distribution system

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages.

Residual-current device Electrical safety device used in household wiring

A residual-current device (RCD), residual-current circuit breaker (RCCB) or ground fault circuit interrupter (GFCI) is an electrical safety device that quickly breaks an electrical circuit with leakage current to ground. It is to protect equipment and to reduce the risk of serious harm from an ongoing electric shock. Injury may still occur in some cases, for example if a human receives a brief shock before the electrical circuit is isolated, falls after receiving a shock, or if the person touches both conductors at the same time.

Fuse (electrical) Electrical safety device that provides overcurrent protection

In electronics and electrical engineering, a fuse is an electrical safety device that operates to provide overcurrent protection of an electrical circuit. Its essential component is a metal wire or strip that melts when too much current flows through it, thereby stopping or interrupting the current. It is a sacrificial device; once a fuse has operated it is an open circuit, and must be replaced or rewired, depending on its type.

Current transformer Transformer used to scale alternating current, used as sensor for AC power

A current transformer (CT) is a type of transformer that is used to reduce or multiply an alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.

Distribution transformer Transformer that provides the final voltage transformation in an electric power distribution system


A distribution transformer or service transformer is a transformer that provides the final voltage transformation in the electric power distribution system, stepping down the voltage used in the distribution lines to the level used by the customer. The invention of a practical efficient transformer made AC power distribution feasible; a system using distribution transformers was demonstrated as early as 1882.

Recloser

In electric power distribution, automatic circuit reclosers (ACRs) are a class of switchgear which is designed for use on overhead electricity distribution networks to detect and interrupt momentary faults. Also known as reclosers or autoreclosers, ACRs are essentially high voltage rated circuit breakers with integrated current and voltage sensors and a protection relay, optimized for use as an overhead network distribution protection asset. Commercial ACRs are governed by the ANSI/IEEE C37.60, IEC 62271-111 and IEC 62271-200 standards. The three major classes of operating voltage are 15.5 kV, 27 kV and 38 kV.

Switchgear Component of an electric power system

In an electric power system, switchgear is composed of electrical disconnect switches, fuses or circuit breakers used to control, protect and isolate electrical equipment. Switchgear is used both to de-energize equipment to allow work to be done and to clear faults downstream. This type of equipment is directly linked to the reliability of the electricity supply.

Power-system automation is the act of automatically controlling the power system via instrumentation and control devices. Substation automation refers to using data from Intelligent electronic devices (IED), control and automation capabilities within the substation, and control commands from remote users to control power-system devices.

An earthing system or grounding system (US) connects specific parts of an electric power system with the ground, typically the Earth's conductive surface, for safety and functional purposes. The choice of earthing system can affect the safety and electromagnetic compatibility of the installation. Regulations for earthing systems vary considerably among countries, though most follow the recommendations of the International Electrotechnical Commission. Regulations may identify special cases for earthing in mines, in patient care areas, or in hazardous areas of industrial plants.

Tap changer

A tap changer is a mechanism in transformers which allows for variable turn ratios to be selected in distinct steps. This is done by connecting to a number of access points known as taps along either the primary or secondary winding.

Power system protection is a branch of electrical power engineering that deals with the protection of electrical power systems from faults through the disconnection of faulted parts from the rest of the electrical network. The objective of a protection scheme is to keep the power system stable by isolating only the components that are under fault, whilst leaving as much of the network as possible still in operation. The devices that are used to protect the power systems from faults are called protection devices.

Spot network substation

In electricity distribution networks, spot network substations are used in interconnected distribution networks. They have the secondary network with all supply transformers bussed together on the secondary side at one location. Spot networks are considered the most reliable and most flexible arrangement of connecting power to all types of loads. Switching can be done without interrupting the power to the loads.

In the design of electrical power systems, the ANSI standard device numbers identifies the features of a protective device such as a relay or circuit breaker. These types of devices protect electrical systems and components from damage when an unwanted event occurs, such as an electrical fault. Device numbers are used to identify the functions of devices shown on a schematic diagram. Function descriptions are given in the standard.

In an electric power system, a fault or fault current is any abnormal electric current. For example, a short circuit is a fault in which a live wire touches a neutral or ground wire. An open-circuit fault occurs if a circuit is interrupted by a failure of a current-carrying wire or a blown fuse or circuit breaker. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between phases. In a "ground fault" or "earth fault", current flows into the earth. The prospective short-circuit current of a predictable fault can be calculated for most situations. In power systems, protective devices can detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure.

Electric power system Network of electrical component deployed to generate, transmit & distribute electricity

An electric power system is a network of electrical components deployed to supply, transfer, and use electric power. An example of a power system is the electrical grid that provides power to homes and industries within an extended area. The electrical grid can be broadly divided into the generators that supply the power, the transmission system that carries the power from the generating centers to the load centers, and the distribution system that feeds the power to nearby homes and industries.

Pad-mounted transformer Ground mounted transformer

A padmount or pad-mounted transformer is a ground mounted electric power distribution transformer in a locked steel cabinet mounted on a concrete pad. Since all energized connection points are securely enclosed in a grounded metal housing, a padmount transformer can be installed in places that do not have room for a fenced enclosure. Padmount transformers are used with underground electric power distribution lines at service drops, to step down the primary voltage on the line to the lower secondary voltage supplied to utility customers. A single transformer may serve one large building, or many homes.

Low-voltage network

A low-voltage network or secondary network is a part of electric power distribution which carries electric energy from distribution transformers to electricity meters of end customers. Secondary networks are operated at a low voltage level, which is typically equal to the mains voltage of electric appliances.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

References