A distribution transformer or service transformer provides a final voltage transformation in the electric power distribution system, stepping down the voltage used in the distribution lines to the level used by the customer. [1] The invention of a practical, efficient transformer made AC power distribution feasible; a system using distribution transformers was demonstrated as early as 1882. [2]
If mounted on a utility pole, they are called pole-mount transformers. Suppose the distribution lines are located at ground level or underground. In that case, distribution transformers are mounted on concrete pads and locked in steel cases, thus known as distribution tap pad-mount transformers.
Distribution transformers typically have ratings less than 200 kVA, [3] although some national standards allow units up to 5000 kVA to be described as distribution transformers. Since distribution transformers are energized 24 hours a day (even when they don't carry any load), reducing iron losses is vital in their design. They usually don't operate at full load, so they are designed to have maximum efficiency at lower loads. To have better efficiency, voltage regulation in these transformers should be kept to a minimum. Hence, they are designed to have small leakage reactance. [4]
Distribution transformers are classified into different categories based on factors such as:
Distribution transformers are normally located at a service drop, where wires run from a utility pole or underground power lines to a customer's premises. They are often used for the power supply of facilities outside settlements, such as isolated houses, farmyards, or pumping stations at voltages below 30 kV. Another application is the power supply of the overhead wire of railways electrified with AC. In this case, single-phase distribution transformers are used. [5]
The number of customers fed by a single distribution transformer varies depending on the number of customers in an area. Several homes may be fed from a single transformer in urban areas; depending on the mains voltage, rural distribution may require one transformer per customer. A large commercial or industrial complex will have multiple distribution transformers. In urban areas and neighborhoods where primary distribution lines run underground, padmount transformers, and locked metal enclosures are mounted on a concrete pad. Many large buildings have electric service provided at primary distribution voltage. These buildings have customer-owned transformers in the basement for step-down purposes. [5]
Distribution transformers are also found in wind farm power collection networks, where they step up power from each wind turbine to connect to a substation that may be several miles (kilometers) distant. [6]
Both pole-mounted and pad-mounted transformers convert the overhead or underground distribution lines' high 'primary' voltage to the lower 'secondary' or 'utilization' voltage inside the building. The primary distribution wires use the three-phase system. Main distribution lines always have three 'hot' wires plus an optional neutral. In the North American system, where single-phase transformers connect to only one phase wire, smaller 'lateral' lines branching off on side roads may include only one or two 'hot' phase wires. (When only one phase wire exists, a neutral will always be provided as a return path.) Primaries provide power at the standard distribution voltages used in the area; these range from as low as 2.3 kV to about 35 kV depending on local distribution practice and standards, often 11 kV (50 Hz systems) and 13.8 kV (60 Hz systems) are used, but many other voltages are standard. For example, in the United States, the most common voltage is 12.47 kV, with a line-to-ground voltage of 7.2 kV. [7] It has a 7.2 kV phase-to-neutral voltage, exactly 30 times the 240 V on the split-phase secondary side.
The high-voltage primary windings are brought out to bushings on the top of the case.
The transformer is always connected to the primary distribution lines through protective fuses and disconnect switches. For pole-mounted transformers, this is usually a 'fused cutout.' An electrical fault melts the fuse, and the device drops open to give a visual indication of trouble. Lineworkers can also manually open it while the line is energized using insulated hot sticks. In some cases, completely self-protected transformers are used, which have a circuit breaker built in, so a fused cutout isn't needed.
The low-voltage secondary windings are attached to three or four terminals on the transformer's side.
Distribution transformers consist of a magnetic core made from laminations of sheet silicon steel (transformer steel) stacked and either glued together with resin or banded together with steel straps, with the primary and secondary wire windings wrapped around them. This core construction is designed to reduce core losses and dissipation of magnetic energy as heat in the core, an economically important cause of power loss in utility grids. Two effects cause core losses: hysteresis loss in the steel and eddy currents. Silicon steel has low hysteresis loss, and the laminated construction prevents eddy currents from flowing in the core, which dissipates power in the resistance of the steel. The efficiency of typical distribution transformers is between about 98 and 99 percent. [8] [9] Where large numbers of transformers are made to standard designs, a wound C-shaped core is economical to manufacture. A steel strip is wrapped around a former, pressed into shape, and then cut into two C-shaped halves re-assembled on the copper windings. [10]
The primary coils are wound from enamel-coated copper or aluminum wire, and the high-current, low-voltage secondaries are wound using a thick ribbon of aluminum or copper. The windings are insulated with resin-impregnated paper. The entire assembly is baked to cure the resin and then submerged in a powder-coated steel tank, which is then filled with transformer oil (or other insulating liquid), which is inert and non-conductive. The transformer oil cools and insulates the windings and protects them from moisture. The tank is temporarily evacuated during manufacture to remove any remaining moisture that would cause arcing and is sealed against the weather with a gasket at the top.[ citation needed ]
Formerly, distribution transformers for indoor use would be filled with a polychlorinated biphenyl (PCB) liquid. Because these chemicals persist in the environment and adversely affect on animals, they have been banned. Other fire-resistant liquids such as silicones are used where a liquid-filled transformer must be used indoors. Certain vegetable oils have been applied as transformer oil; these have the advantage of a high fire point and are completely biodegradable in the environment. [11]
Pole-mounted transformers often include accessories such as surge arresters or protective fuse links. A self-protected transformer consists of an internal fuse and surge arrester; other transformers have these components mounted separately outside the tank. [12] Pole-mounted transformers may have lugs allowing direct mounting to a pole or may be mounted on cross-arms bolted to the pole. Aerial transformers, larger than around 75 kVA, may be mounted on a platform supported by one or more poles. [13] A three-phase service may use three identical transformers, one per phase.
Transformers designed for below-grade installation can be designed for periodic submersion in water. [14]
Distribution transformers may include an off-load tap changer, which slightly adjusts the ratio between primary and secondary voltage to bring the customer's voltage within the desired range on long or heavily loaded lines.[ citation needed ]
Pad-mounted transformers have secure locked, bolted' and grounded metal enclosures to discourage unauthorized access to live internal parts. The enclosure may also include fuses, isolating switches, load-break bushings, and other accessories as described in technical standards. Pad-mounted transformers for distribution systems typically range from around 100 to 2000 kVA, although some larger units are also used.[ citation needed ]
In the United States, distribution transformers are often installed outdoors on wooden poles.
In Europe, it is most common to place them in buildings. If the feeding lines are overhead, these look like towers. If all lines running to the transformer are underground, small buildings are used. In rural areas, sometimes distribution transformers are mounted on poles, and the pole is usually made of concrete or iron due to the weight of the transformer.
In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.
Three-phase electric power is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. It is a type of polyphase system employing three wires and is the most common method used by electrical grids worldwide to transfer power.
Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in which electric power is delivered to businesses and residences, and it is the form of electrical energy that consumers typically use when they plug kitchen appliances, televisions, fans and electric lamps into a wall socket. The abbreviations AC and DC are often used to mean simply alternating and direct, respectively, as when they modify current or voltage.
Electric power distribution is the final stage in the delivery of electricity. Electricity is carried from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 33 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.
Single-wire earth return (SWER) or single-wire ground return is a single-wire transmission line which supplies single-phase electric power from an electrical grid to remote areas at lowest cost. The earth is used as the return path for the current, to avoid the need for a second wire to act as a return path.
A split-phase or single-phase three-wire system is a type of single-phase electric power distribution. It is the alternating current (AC) equivalent of the original Edison Machine Works three-wire direct-current system. Its primary advantage is that, for a given capacity of a distribution system, it saves conductor material over a single-ended single-phase system.
In electrical engineering, ground and neutral are circuit conductors used in alternating current (AC) electrical systems. The neutral conductor receives and returns alternating current to the supply during normal operation of the circuit; to limit the effects of leakage current from higher-voltage systems, the neutral conductor is often connected to earth ground at the point of supply. By contrast, a ground conductor is not intended to carry current for normal operation, but instead connects exposed metallic components to earth ground. A ground conductor only carries significant current if there is a circuit fault that would otherwise energize exposed conductive parts and present a shock hazard. In that case, circuit protection devices may detect a fault to a grounded metal enclosure and automatically de-energize the circuit, or may provide a warning of a ground fault.
In electrical engineering, an autotransformer is an electrical transformer with only one winding. The "auto" prefix refers to the single coil acting alone. In an autotransformer, portions of the same winding act as both the primary winding and secondary winding sides of the transformer. In contrast, an ordinary transformer has separate primary and secondary windings that are not connected by an electrically conductive path between them.
A zigzag transformer winding is a special-purpose transformer winding with a zigzag or "interconnected star" connection, such that each output is the vector sum of two (2) phases offset by 120°. It is used as a grounding transformer, creating a missing neutral connection from an ungrounded 3-phase system to permit the grounding of that neutral to an earth reference point; to perform harmonic mitigation, as they can suppress triplet harmonic currents; to supply 3-phase power as an autotransformer ; and to supply non-standard, phase-shifted, 3-phase power.
A current transformer (CT) is a type of transformer that reduces or multiplies alternating current (AC), producing a current in its secondary which is proportional to the current in its primary.
A utility pole, commonly referred to as a transmission pole, telephone pole, telecommunication pole, power pole, hydro pole, telegraph pole, or telegraph post, is a column or post used to support overhead power lines and various other public utilities, such as electrical cable, fiber optic cable, and related equipment such as transformers and street lights while depending on its application. They are used for two different types of power lines: sub transmission lines, which carry higher voltage power between substations, and distribution lines, which distribute lower voltage power to customers.
An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors suspended by towers or poles. Since the surrounding air provides good cooling, insulation along long passages, and allows optical inspection, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy.
In electric power distribution, a service drop is an overhead electrical line running from a utility pole, to a customer's building or other premises. It is the point where electric utilities provide power to their customers. The customer connection to an underground distribution system is usually called a "service lateral". Conductors of a service drop or lateral are usually owned and maintained by the utility company, but some industrial drops are installed and owned by the customer.
In electrical engineering, a vector group, officially called a connection symbol, is the International Electrotechnical Commission (IEC) method of categorizing the high voltage (HV) windings and low voltage (LV) winding configurations of three-phase transformers. The vector group designation indicates the windings configurations and the difference in phase angle between them. For example, a star HV winding and delta LV winding with a 30-degree lead is denoted as Yd11.
A delta-wye transformer is a type of three-phase electric power transformer design that employs delta-connected windings on its primary and wye/star connected windings on its secondary. A neutral wire can be provided on wye output side. It can be a single three-phase transformer, or built from three independent single-phase units. An equivalent term is delta-star transformer.
A Scott-T transformer or Scott connection is a type of circuit used to produce two-phase electric power from a three-phase source, or vice versa. The Scott connection evenly distributes a balanced load between the phases of the source. The Scott three-phase transformer was invented by Westinghouse engineer Charles F. Scott in the late 1890s to bypass Thomas Edison's more expensive rotary converter and thereby permit two-phase generator plants to drive three-phase motors.
High-leg delta is a type of electrical service connection for three-phase electric power installations. It is used when both single and three-phase power is desired to be supplied from a three phase transformer. The three-phase power is connected in the delta configuration, and the center point of one phase is grounded. This creates both a split-phase single-phase supply and three-phase. It is sometimes called orange leg because the L3 wire is required to be color-coded orange in the United States. By convention, the high leg is usually set in the center lug in the involved panel, regardless of the L1–L2–L3 designation at the transformer.
Various types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.
A padmount or pad-mounted transformer is a ground-mounted electric power distribution transformer in a locked steel cabinet mounted on a concrete pad. Since all energized connection points are securely enclosed in a grounded metal housing, a padmount transformer can be installed in places that do not have room for a fenced enclosure. Padmount transformers are used with underground electric power distribution lines at service drops to step down the primary voltage on the line to the lower secondary voltage supplied to utility customers. A single transformer may serve one large building or many homes.
A low-voltage network or secondary network is a part of electric power distribution which carries electric energy from distribution transformers to electricity meters of end customers. Secondary networks are operated at a low voltage level, which is typically equal to the mains voltage of electric appliances.