Distribution transformer

Last updated
Single-phase distribution transformer in Canada Polemount-singlephase-closeup.jpg
Single-phase distribution transformer in Canada

A distribution transformer or service transformer is a transformer that provides a final voltage transformation in the electric power distribution system, stepping down the voltage used in the distribution lines to the level used by the customer. [1] The invention of a practical efficient transformer made AC power distribution feasible; a system using distribution transformers was demonstrated as early as 1882.

Contents

If mounted on a utility pole, they are called pole-mount transformers. If the distribution lines are located at ground level or underground, distribution transformers are mounted on concrete pads and locked in steel cases, thus known as distribution tap pad-mount transformers.

Distribution transformers normally have ratings less than 200 kVA, [2] although some national standards can allow for units up to 5000 kVA to be described as distribution transformers. Since distribution transformers are energized for 24 hours a day (even when they don't carry any load), reducing iron losses has an important role in their design. As they usually don't operate at full load, they are designed to have maximum efficiency at lower loads. To have a better efficiency, voltage regulation in these transformers should be kept to a minimum. Hence they are designed to have small leakage reactance. [3]

Types

Distribution transformers are classified into different categories based on factors such as:

Two three-phase transformers in Hungary Budakeszitrafo.JPG
Two three-phase transformers in Hungary

Use

Distribution transformers are normally located at a service drop, where wires run from a utility pole or underground power lines to a customer's premises. They are often used for the power supply of facilities outside settlements, such as isolated houses, farmyards or pumping stations at voltages below 30 kV. Another application is the power supply of the overhead wire of railways electrified with AC. In this case single phase distribution transformers are used. [4]

The number of customers fed by a single distribution transformer varies depending on the number of customers in an area. Several homes may be fed from a single transformer in urban areas. Rural distribution may require one transformer per customer, depending on mains voltage. A large commercial or industrial complex will have multiple distribution transformers. In urban areas and neighborhoods where the primary distribution lines run underground, padmount transformers, transformers in locked metal enclosures mounted on a concrete pad, are used. Many large buildings have electric service provided at primary distribution voltage. These buildings have customer-owned transformers in the basement for step-down purposes. [4]

Distribution transformers are also found in the power collection networks of wind farms, where they step up power from each wind turbine to connect to a substation that may be several miles (kilometres) distant. [5]

Connections

Phase-to-phase transformer in Britain 240v transformer - geograph.org.uk - 1062014.jpg
Phase-to-phase transformer in Britain
Primary line on the right toward the front and secondary lines in the back of this single-phase transformer Pole mounted single-phase transformer cutaway.jpg
Primary line on the right toward the front and secondary lines in the back of this single-phase transformer

Both pole-mounted and pad-mounted transformers convert the high 'primary' voltage of the overhead or underground distribution lines to the lower 'secondary' or 'utilization' voltage inside the building. The primary distribution wires use the three-phase system. Main distribution lines always have three 'hot' wires plus an optional neutral. In the North American system, where single-phase transformers connect to only one phase wire, smaller 'lateral' lines branching off on side roads may include only one or two 'hot' phase wires. (When there is only one phase wire, a neutral will always be provided as a return path.) Primaries provide power at the standard distribution voltages used in the area; these range from as low as 2.3 kV to about 35 kV depending on local distribution practice and standards; often 11 kV (50 Hz systems) and 13.8 kV (60 Hz systems) are used, but many other voltages are common. For example, in the United States, the most common voltage is 12.47 kV, which has a line-to-ground voltage of 7.2 kV. [6] This has a 7.2 kV phase-to-neutral voltage, exactly 30 times the 240 V on the split-phase secondary side.

Primary

The high voltage primary windings are brought out to bushings on the top of the case.

The transformer is always connected to the primary distribution lines through protective fuses and disconnect switches. For pole-mounted transformers this is usually a 'fused cutout'. An electrical fault melts the fuse and the device drops open to give a visual indication of trouble. It can also be manually opened while the line is energized by lineworkers using insulated hot sticks. In some cases completely self protected transformers are used, which have a circuit breaker built in, so a fused cutout isn't needed.

Secondary

A "transformer bank", widely used in North America: three single-phase transformers connected to make a 3-phase transformer. Utility pole transformers.jpg
A "transformer bank", widely used in North America: three single-phase transformers connected to make a 3-phase transformer.

The low voltage secondary windings are attached to three or four terminals on the transformer's side.

Construction

Oil-cooled three-phase distribution transformer, similar to one in above photo, with housing off, showing construction. Olgekuhlter Transformator ohne Gehause.jpg
Oil-cooled three-phase distribution transformer, similar to one in above photo, with housing off, showing construction.

Distribution transformers consist of a magnetic core made from laminations of sheet silicon steel (transformer steel) stacked and either glued together with resin or banded together with steel straps, with the primary and secondary wire windings wrapped around them. This core construction is designed to reduce core losses, dissipation of magnetic energy as heat in the core, which are an economically important cause of power loss in utility grids. Core losses are caused by two effects; hysteresis loss in the steel, and eddy currents. Silicon steel has low hysteresis loss, and the laminated construction prevents eddy currents from flowing in the core, which dissipate power in the resistance of the steel. Efficiency of typical distribution transformers is between about 98 and 99 percent. [7] [8] Where large numbers of transformers are made to standard designs, a wound C-shaped core is economic to manufacture. A steel strip is wrapped around a former, pressed into shape and then cut into two C-shaped halves, which are re-assembled on the copper windings. [9]

The primary coils are wound from enamel coated copper or aluminum wire and the high current, low voltage secondaries are wound using a thick ribbon of aluminum or copper. The windings are insulated with resin-impregnated paper. The entire assembly is baked to cure the resin and then submerged in a powder coated steel tank which is then filled with transformer oil (or other insulating liquid), which is inert and non-conductive. The transformer oil cools and insulates the windings, and protects them from moisture. The tank is temporarily evacuated during manufacture to remove any remaining moisture that would cause arcing and is sealed against the weather with a gasket at the top.[ citation needed ]

Formerly, distribution transformers for indoor use would be filled with a polychlorinated biphenyl (PCB) liquid. Because these chemicals persist in the environment and have adverse effects on animals, they have been banned. Other fire-resistant liquids such as silicones are used where a liquid-filled transformer must be used indoors. Certain vegetable oils have been applied as transformer oil; these have the advantage of a high fire point and are completely biodegradable in the environment. [10]

Pole-mounted transformers often include accessories such as surge arresters or protective fuse links. A self-protected transformer includes an internal fuse and surge arrester; other transformers have these components mounted separately outside the tank. [11] Pole-mounted transformers may have lugs allowing direct mounting to a pole, or may be mounted on crossarms bolted to the pole. Aerial transformers, larger than around 75 kVA, may be mounted on a platform supported by one or more poles. [12] A three-phase service may use three identical transformers, one per phase.

Transformers designed for below-grade installation can be designed for periodic submersion in water. [13]

Distribution transformers may include an off-load tap changer to allow slight adjustment of the ratio between primary and secondary voltage, to bring the customer's voltage within the desired range on long or heavily loaded lines.[ citation needed ]

Pad-mounted transformers have secure locked, bolted' and grounded metal enclosures to discourage unauthorized access to live internal parts. The enclosure may also include fuses, isolating switches, load-break bushings, and other accessories as described in technical standards. Pad-mounted transformers for distribution systems typically range from around 100 to 2000 kVA, although some larger units are also used.[ citation needed ]

Placement

Distribution substations inside a small tower-like building are common in Europe. Near Jelenia Gora, Poland Jelenia Gora - fotopolska.eu (218205).jpg
Distribution substations inside a small tower-like building are common in Europe. Near Jelenia Góra, Poland

In the United States, distribution transformers are often installed outdoors on wooden poles.

In Europe, it is most common to place them in buildings. These look like towers, if the feeding lines are overhead. If all lines running to the transformer are underground lines, small buildings are used. In rural areas, sometimes distribution transformers mounted on poles, and the pole is usually made of concrete or iron due to the weight of the transformer.

See also

Related Research Articles

<span class="mw-page-title-main">Transformer</span> Device to couple energy between circuits

In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

<span class="mw-page-title-main">Three-phase electric power</span> Common electrical power generation, transmission and distribution method for alternating currents

Three-phase electric power is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. It is a type of polyphase system employing three wires and is the most common method used by electrical grids worldwide to transfer power.

<span class="mw-page-title-main">Electric power distribution</span> Final stage of electricity delivery to individual consumers in a power grid

Electric power distribution is the final stage in the delivery of electricity. Electricity is carried from the transmission system to individual consumers. Distribution substations connect to the transmission system and lower the transmission voltage to medium voltage ranging between 2 kV and 33 kV with the use of transformers. Primary distribution lines carry this medium voltage power to distribution transformers located near the customer's premises. Distribution transformers again lower the voltage to the utilization voltage used by lighting, industrial equipment and household appliances. Often several customers are supplied from one transformer through secondary distribution lines. Commercial and residential customers are connected to the secondary distribution lines through service drops. Customers demanding a much larger amount of power may be connected directly to the primary distribution level or the subtransmission level.

<span class="mw-page-title-main">Single-phase electric power</span> Type of electric power distribution

In electrical engineering, single-phase electric power is the distribution of alternating current electric power using a system in which all the voltages of the supply vary in unison. Single-phase distribution is used when loads are mostly lighting and heating, with few large electric motors. A single-phase supply connected to an alternating current electric motor does not produce a rotating magnetic field; single-phase motors need additional circuits for starting, and such motors are uncommon above 10 kW in rating.

<span class="mw-page-title-main">Single-wire earth return</span> Supply energy using single wire with earth as return

Single-wire earth return (SWER) or single-wire ground return is a single-wire transmission line which supplies single-phase electric power from an electrical grid to remote areas at lowest cost. The earth is used as the return path for the current, to avoid the need for a second wire to act as a return path.

<span class="mw-page-title-main">Split-phase electric power</span> Type of single-phase electric power distribution

A split-phase or single-phase three-wire system is a type of single-phase electric power distribution. It is the alternating current (AC) equivalent of the original Edison Machine Works three-wire direct-current system. It primary advantage is that, for a given capacity of a distribution system, it saves conductor material over a single-ended single-phase system.

<span class="mw-page-title-main">Ground and neutral</span> In mains electricity, part of a circuit connected to ground or earth

In electrical engineering, ground and neutral are circuit conductors used in alternating current (AC) electrical systems. The neutral conductor returns current to the supply. To limit the effects of leakage current from higher-voltage systems, the neutral conductor is often connected to earth ground at the point of supply. A ground conductor is not intended to carry current for normal operation of the circuit, but instead connects exposed metallic components to earth ground. A ground conductor only carries significant current if there is a circuit fault that would otherwise energize exposed conductive parts and present a shock hazard. Circuit protection devices may detect a fault to a grounded metal enclosure and automatically de-energize the circuit, or may provide a warning of a ground fault.

<span class="mw-page-title-main">Autotransformer</span> Type of electrical transformer

In electrical engineering, an autotransformer is an electrical transformer with only one winding. The "auto" prefix refers to the single coil acting alone. In an autotransformer, portions of the same winding act as both the primary winding and secondary winding sides of the transformer. In contrast, an ordinary transformer has separate primary and secondary windings that are not connected by an electrically conductive path. between them.

<span class="mw-page-title-main">Zigzag transformer</span> Type of electric transformer

A zigzag transformer winding is a special-purpose transformer winding with a zigzag or "interconnected star" connection, such that each output is the vector sum of two (2) phases offset by 120°. It is used as a grounding transformer, creating a missing neutral connection from an ungrounded 3-phase system to permit the grounding of that neutral to an earth reference point; to perform harmonic mitigation, as they can suppress triplet harmonic currents; to supply 3-phase power as an autotransformer ; and to supply non-standard, phase-shifted, 3-phase power.

<span class="mw-page-title-main">Current transformer</span> Transformer used to scale alternating current, used as sensor for AC power

A current transformer (CT) is a type of transformer that is used to reduce or multiply an alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.

<span class="mw-page-title-main">Utility pole</span> Post used by public utilities to support overhead wires and related equipment

A utility pole is a column or post, usually made out of wood or aluminum alloy, used to support overhead power lines and various other public utilities, such as electrical cable, fiber optic cable, and related equipment such as transformers and street lights. It can be referred to as a transmission pole, telephone pole, telecommunication pole, power pole, hydro pole, telegraph pole, or telegraph post, depending on its application. A Stobie pole is a multi-purpose pole made of two steel joists held apart by a slab of concrete in the middle, generally found in South Australia.

<span class="mw-page-title-main">Overhead power line</span> Above-ground structure for bulk transfer and distribution of electricity

An overhead power line is a structure used in electric power transmission and distribution to transmit electrical energy along large distances. It consists of one or more conductors suspended by towers or poles. Since the surrounding air provides good cooling, insulation along long passages and allows optical inspection, overhead power lines are generally the lowest-cost method of power transmission for large quantities of electric energy.

<span class="mw-page-title-main">Service drop</span> Overhead electrical line running from a utility pole

In electric power distribution, a service drop is an overhead electrical line running from a utility pole, to a customer's building or other premises. It is the point where electric utilities provide power to their customers. The customer connection to an underground distribution system is usually called a "service lateral". Conductors of a service drop or lateral are usually owned and maintained by the utility company, but some industrial drops are installed and owned by the customer.

In electrical engineering, a vector group, officially called a connection symbol, is the International Electrotechnical Commission (IEC) method of categorizing the high voltage (HV) windings and low voltage (LV) winding configurations of three-phase transformers. The vector group designation indicates the windings configurations and the difference in phase angle between them. For example, a star HV winding and delta LV winding with a 30-degree lead is denoted as Yd11.

<span class="mw-page-title-main">Delta-wye transformer</span> 3-phase electric power transformer design

A delta-wye transformer is a type of three-phase electric power transformer design that employs delta-connected windings on its primary and wye/star connected windings on its secondary. A neutral wire can be provided on wye output side. It can be a single three-phase transformer, or built from three independent single-phase units. An equivalent term is delta-star transformer.

A Scott-T transformer or Scott connection is a type of circuit used to produce two-phase electric power from a three-phase source, or vice versa. The Scott connection evenly distributes a balanced load between the phases of the source. The Scott three-phase transformer was invented by Westinghouse engineer Charles F. Scott in the late 1890s to bypass Thomas Edison's more expensive rotary converter and thereby permit two-phase generator plants to drive three-phase motors.

<span class="mw-page-title-main">High-leg delta</span> Type of electrical connection

High-leg delta is a type of electrical service connection for three-phase electric power installations. It is used when both single and three-phase power is desired to be supplied from a three phase transformer. The three-phase power is connected in the delta configuration, and the center point of one phase is grounded. This creates both a split-phase single-phase supply and three-phase. It is sometimes called orange leg because the L3 wire is required to be color-coded orange in the United States. By convention, the high leg is usually set in the center lug in the involved panel, regardless of the L1–L2–L3 designation at the transformer.

<span class="mw-page-title-main">Transformer types</span> Overview of electrical transformer types

A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

<span class="mw-page-title-main">Pad-mounted transformer</span> Ground mounted transformer

A padmount or pad-mounted transformer is a ground-mounted electric power distribution transformer in a locked steel cabinet mounted on a concrete pad. Since all energized connection points are securely enclosed in a grounded metal housing, a padmount transformer can be installed in places that do not have room for a fenced enclosure. Padmount transformers are used with underground electric power distribution lines at service drops to step down the primary voltage on the line to the lower secondary voltage supplied to utility customers. A single transformer may serve one large building or many homes.

<span class="mw-page-title-main">Low-voltage network</span>

A low-voltage network or secondary network is a part of electric power distribution which carries electric energy from distribution transformers to electricity meters of end customers. Secondary networks are operated at a low voltage level, which is typically equal to the mains voltage of electric appliances.

References

  1. Harlow 2012, p. 3-4.
  2. Bakshi 2009, p. 1-24.
  3. Bakshi 2009, p. 1-25.
  4. 1 2 Harlow 2012, p. 3-17.
  5. Harlow 2012, p. 3-10.
  6. "Introduction to Distribution Systems". Iowa State University. Retrieved 29 December 2023.
  7. De Keulenaer et al. 2001
  8. Kubo, T.; Sachs, H.; Nadel, S. (2001). Opportunities for New Appliance and Equipment Efficiency Standards. American Council for an Energy-Efficient Economy. p. 39, fig. 1. Retrieved June 21, 2009.
  9. Harlow 2012, p. 3-3.
  10. Harlow 2012, p. 3-5.
  11. Pansini 2005, p. 63.
  12. Pansini 2005, p. 61.
  13. Harlow 2012, p. 3-9.

Bibliography