Instrument transformer

Last updated

Instrument transformers are high accuracy class electrical devices used to isolate or transform voltage or current levels. The most common usage of instrument transformers is to operate instruments or metering from high voltage or high current circuits, safely isolating secondary control circuitry from the high voltages or currents. The primary winding of the transformer is connected to the high voltage or high current circuit, and the meter or relay is connected to the secondary circuit.

Contents

Instrument transformers may also be used as an isolation transformer so that secondary quantities may be used in phase shifting without affecting other primary connected devices. [1]

Current transformer

Current transformers used in metering equipment for three-phase 400 ampere electricity supply CurrentTransformers.jpg
Current transformers used in metering equipment for three-phase 400 ampere electricity supply
SF6 110 kV current transformer TGFM series, Russia SF6 current transformer TGFM-110 Russia.jpg
SF6 110 kV current transformer TGFM series, Russia

Current transformers (CT) are a series-connected type of instrument transformer. They are designed to present negligible load to the supply being measured and have an accurate current ratio and phase relationship to enable accurate secondary connected metering.

Current transformers are often constructed by passing a single primary turn (either an insulated cable or an uninsulated bus bar) through a well-insulated toroidal core wrapped with many turns of wire. This affords easy implementation on high voltage bushings of grid transformers and other devices by installing the secondary turn core inside high-voltage bushing insulators and using the pass-through conductor as a single turn primary.

Clampmeter utilizing a split core Clampmeter.jpg
Clampmeter utilizing a split core

A current clamp uses a current transformer with a split core that can be easily wrapped around a conductor in a circuit. This is a common method used in portable current measuring instruments but permanent installations use more economical types of the current transformer. Specially constructed wideband CTs are also used, usually with an oscilloscope, to measure high frequency waveforms or pulsed currents within pulsed power systems. One type provides an IR voltage output that is proportional to the measured current; another, called a Rogowski coil, requires an external integrator in order to provide a proportional output.

Ratio

The CT is typically described by its current ratio from primary to secondary. A 1000:5 CT will provide an output current of 5 amperes when 1000 amperes are flowing through its primary winding. Standard secondary current ratings are 5 amperes or 1 ampere, compatible with standard measuring instruments. It is used to step down current for metering purposes for the safety of the equipments as well as operator.

Burden and accuracy

Burden and accuracy are usually stated as a combined parameter due to being dependent on each other.

Metering style CTs are designed with smaller cores and VA capacities. This causes metering CTs to saturate at lower secondary voltages saving sensitive connected metering devices from damaging large fault currents in the event of a primary electrical fault. A CT with a rating of 0.3B0.6 would indicate with up to 0.6 ohms of secondary burden the secondary current will be within a 0.3 percent error parallelogram on an accuracy diagram incorporating both phase angle and ratio errors. [2]
Relaying CTs used for protective circuits are designed with larger cores and higher VA capacities to ensure secondary measuring devices have true representations with massive grid fault currents on primary circuits. A CT with a rating of 2.5L400 would indicate it can produce a secondary voltage to 400 volts with a secondary current of 100 amperes (20 times its rated 5-ampere rating) and still be within 2.5 amperes of true accuracy.

Care must be taken that the secondary winding of a CT is not disconnected from its low-impedance load while current flows in the primary, as this may produce a dangerously high voltage across the open secondary (especially in a relaying type CT) and could permanently affect the accuracy of the transformer.

Multi-ratio CT

The secondary winding can be a single ratio or have several tap points to provide a range of ratios.

Voltage transformer

Related Research Articles

<span class="mw-page-title-main">Ammeter</span> Device that measures electric current

An ammeter is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit in which the current is to be measured. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured.

<span class="mw-page-title-main">Transformer</span> Device to couple energy between circuits

A transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

<span class="mw-page-title-main">Multimeter</span> Electronic measuring instrument that combines several measurement functions in one unit

A multimeter is a measuring instrument that can measure multiple electrical properties. A typical multimeter can measure voltage, resistance, and current, in which case can be used as a voltmeter, ammeter, and ohmmeter. Some feature the measurement of additional properties such as temperature and capacitance.

<span class="mw-page-title-main">Rogowski coil</span> Device for measuring alternating current

A Rogowski coil, named after Walter Rogowski, is an electrical device for measuring alternating current (AC) or high-speed current pulses. It sometimes consists of a helical coil of wire with the lead from one end returning through the centre of the coil to the other end so that both terminals are at the same end of the coil. This approach is sometimes referred to as a counter-wound Rogowski.

<span class="mw-page-title-main">Balun</span> Electrical device

A balun is an electrical device that allows balanced and unbalanced lines to be interfaced without disturbing the impedance arrangement of either line. A balun can take many forms and may include devices that also transform impedances but need not do so. Sometimes, in the case of transformer baluns, they use magnetic coupling but need not do so. Common-mode chokes are also used as baluns and work by eliminating, rather than rejecting, common mode signals.

<span class="mw-page-title-main">Voltage regulator</span> System designed to maintain a constant voltage

A voltage regulator is a system designed to automatically maintain a constant voltage. It may use a simple feed-forward design or may include negative feedback. It may use an electromechanical mechanism, or electronic components. Depending on the design, it may be used to regulate one or more AC or DC voltages.

<span class="mw-page-title-main">Linear variable differential transformer</span> Type of electrical transformer

The linear variable differential transformer (LVDT) is a type of electrical transformer used for measuring linear displacement (position). A counterpart to this device that is used for measuring rotary displacement is called a rotary variable differential transformer (RVDT).

<span class="mw-page-title-main">Synchro</span> Variable transformers used in control systems

A synchro is, in effect, a transformer whose primary-to-secondary coupling may be varied by physically changing the relative orientation of the two windings. Synchros are often used for measuring the angle of a rotating machine such as an antenna platform or transmitting rotation. In its general physical construction, it is much like an electric motor. The primary winding of the transformer, fixed to the rotor, is excited by an alternating current, which by electromagnetic induction, causes voltages to appear between the Y-connected secondary windings fixed at 120 degrees to each other on the stator. The voltages are measured and used to determine the angle of the rotor relative to the stator.

<span class="mw-page-title-main">Autotransformer</span> Type of electrical transformer

An autotransformer is an electrical transformer with only one winding. The "auto" prefix refers to the single coil acting alone. In an autotransformer, portions of the same winding act as both the primary winding and secondary winding sides of the transformer. In contrast, an ordinary transformer has separate primary and secondary windings that are not connected by an electrically conductive path. between them.

<span class="mw-page-title-main">Zigzag transformer</span>

A zigzag transformer winding is a special-purpose transformer winding with a zigzag or "interconnected star" connection, such that each output is the vector sum of two (2) phases offset by 120°. It is used as a grounding transformer, creating a missing neutral connection from an ungrounded 3-phase system to permit the grounding of that neutral to an earth reference point; to perform harmonic mitigation, as they can suppress triplet harmonic currents; to supply 3-phase power as an autotransformer ; and to supply non-standard, phase-shifted, 3-phase power.

<span class="mw-page-title-main">Current transformer</span> Transformer used to scale alternating current, used as sensor for AC power

A current transformer (CT) is a type of transformer that is used to reduce or multiply an alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.

<span class="mw-page-title-main">Inrush current</span> Maximal instantaneous input current drawn by an electrical device when first turned on

Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform. Power converters also often have inrush currents much higher than their steady-state currents, due to the charging current of the input capacitance. The selection of over-current-protection devices such as fuses and circuit breakers is made more complicated when high inrush currents must be tolerated. The over-current protection must react quickly to overload or short-circuit faults but must not interrupt the circuit when the inrush current flows.

<span class="mw-page-title-main">Current clamp</span> Tool for measuring electrical current

In electrical and electronic engineering, a current clamp, also known as current probe, is an electrical device with jaws which open to allow clamping around an electrical conductor. This allows measurement of the current in a conductor without the need to make physical contact with it, or to disconnect it for insertion through the probe.

<span class="mw-page-title-main">Polarity (mutual inductance)</span> Magnetically coupled transformer winding polarities

In electrical engineering, dot marking convention, or alphanumeric marking convention, or both, can be used to denote the same relative instantaneous polarity of two mutually inductive components such as between transformer windings. These markings may be found on transformer cases beside terminals, winding leads, nameplates, schematic and wiring diagrams.

<span class="mw-page-title-main">Test probe</span>

A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include test prods, oscilloscope probes and current probes. A test probe is often supplied as a test lead, which includes the probe, cable and terminating connector.

<span class="mw-page-title-main">Transformer types</span> Overview of electrical transformer types

A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

<span class="mw-page-title-main">Protective relay</span> Relay device designed to trip a circuit breaker when a fault is detected

In electrical engineering, a protective relay is a relay device designed to trip a circuit breaker when a fault is detected. The first protective relays were electromagnetic devices, relying on coils operating on moving parts to provide detection of abnormal operating conditions such as over-current, overvoltage, reverse power flow, over-frequency, and under-frequency.

<span class="mw-page-title-main">Voltage transformer</span> Type of electrical transformer

Voltage transformers (VT), also called potential transformers (PT), are a parallel-connected type of instrument transformer. They are designed to present a negligible load to the supply being measured and have an accurate voltage ratio and phase relationship to enable accurate secondary connected metering.

<span class="mw-page-title-main">Current sensing</span>

In electrical engineering, current sensing is any one of several techniques used to measure electric current. The measurement of current ranges from picoamps to tens of thousands of amperes. The selection of a current sensing method depends on requirements such as magnitude, accuracy, bandwidth, robustness, cost, isolation or size. The current value may be directly displayed by an instrument, or converted to digital form for use by a monitoring or control system.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

References

  1. "Measurement Canada Standard Dwg. No.3400 D3 Delta Connected CTs" (PDF). MEASUREMENT CANADA. Retrieved 12 December 2012.
  2. "Limits of the 0.3 and 0.6 accuracy classes for measuring current transformers". Measurement Canada. Retrieved 18 April 2013.