Short-circuit test

Last updated
Circuit diagram for short-circuit test Short Circuit test.jpg
Circuit diagram for short-circuit test

The purpose of a short-circuit test is to determine the series branch parameters of the equivalent circuit of a transformer.

Contents

Method

The test is conducted on the high-voltage (HV) side of the transformer where the low-voltage (LV) side (or the secondary) is short-circuited. A wattmeter is connected to the primary side. An ammeter is connected in series with the primary winding. A voltmeter is optional since the applied voltage is the same as the voltmeter reading. Now with the help of a variac, the applied voltage is slowly increased until the ammeter gives a reading equal to the rated current of the HV side. After reaching the rated current of the HV side, all three instruments reading (Voltmeter, Ammeter, and wattmeter readings) are recorded. The ammeter reading gives the primary equivalent of full load current IL. As the voltage applied for full load current in short circuit test on transformer is quite small compared to the rated primary voltage of the transformer, the iron losses in the transformer can be taken as negligible here.

Calculations

is the full-load copper loss

is the applied voltage

is the rated current

is the resistance as viewed from the primary

is the total impedance as viewed from the primary

is the reactance as viewed from the primary

High-power tests

A short-circuit test for determination of transformer impedance and losses is carried out with relatively low power applied to the transformer, and with winding currents of the same magnitude as in operation. A different form of short-circuit testing is done to assess the mechanical strength of the transformer windings, and their ability to withstand the high forces produced if an energized transformer experiences a short-circuit fault. Currents during such events can be several times the normal rated current. The resultant forces can distort the windings or break internal connections. For large utility-scale power transformers, high-power test laboratories have facilities to apply the very high power levels representative of a fault on an interconnected grid system.

See also

Related Research Articles

<span class="mw-page-title-main">Ammeter</span> Device that measures electric current

An ammeter is an instrument used to measure the current in a circuit. Electric currents are measured in amperes (A), hence the name. For direct measurement, the ammeter is connected in series with the circuit in which the current is to be measured. An ammeter usually has low resistance so that it does not cause a significant voltage drop in the circuit being measured.

<span class="mw-page-title-main">Transformer</span> Device to couple energy between circuits

In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

<span class="mw-page-title-main">Three-phase electric power</span> Common electrical power generation, transmission and distribution method for alternating currents

Three-phase electric power is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. It is a type of polyphase system employing three wires and is the most common method used by electrical grids worldwide to transfer power.

<span class="mw-page-title-main">Impedance matching</span> Adjusting input/output impedances of an electrical circuit for some purpose

In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance.

<span class="mw-page-title-main">Gyrator</span> Two-port non-reciprocal network element

A gyrator is a passive, linear, lossless, two-port electrical network element proposed in 1948 by Bernard D. H. Tellegen as a hypothetical fifth linear element after the resistor, capacitor, inductor and ideal transformer. Unlike the four conventional elements, the gyrator is non-reciprocal. Gyrators permit network realizations of two-(or-more)-port devices which cannot be realized with just the four conventional elements. In particular, gyrators make possible network realizations of isolators and circulators. Gyrators do not however change the range of one-port devices that can be realized. Although the gyrator was conceived as a fifth linear element, its adoption makes both the ideal transformer and either the capacitor or inductor redundant. Thus the number of necessary linear elements is in fact reduced to three. Circuits that function as gyrators can be built with transistors and op-amps using feedback.

In the power systems analysis field of electrical engineering, a per-unit system is the expression of system quantities as fractions of a defined base unit quantity. Calculations are simplified because quantities expressed as per-unit do not change when they are referred from one side of a transformer to the other. This can be a pronounced advantage in power system analysis where large numbers of transformers may be encountered. Moreover, similar types of apparatus will have the impedances lying within a narrow numerical range when expressed as a per-unit fraction of the equipment rating, even if the unit size varies widely. Conversion of per-unit quantities to volts, ohms, or amperes requires a knowledge of the base that the per-unit quantities were referenced to. The per-unit system is used in power flow, short circuit evaluation, motor starting studies etc.

<span class="mw-page-title-main">Autotransformer</span> Type of electrical transformer

In electrical engineering, an autotransformer is an electrical transformer with only one winding. The "auto" prefix refers to the single coil acting alone. In an autotransformer, portions of the same winding act as both the primary winding and secondary winding sides of the transformer. In contrast, an ordinary transformer has separate primary and secondary windings that are not connected by an electrically conductive path. between them.

<span class="mw-page-title-main">Current transformer</span> Transformer used to scale alternating current, used as sensor for AC power

A current transformer (CT) is a type of transformer that is used to reduce or multiply an alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.

Leakage inductance derives from the electrical property of an imperfectly coupled transformer whereby each winding behaves as a self-inductance in series with the winding's respective ohmic resistance constant. These four winding constants also interact with the transformer's mutual inductance. The winding leakage inductance is due to leakage flux not linking with all turns of each imperfectly coupled winding.

A shunt is a device that is designed to provide a low-resistance path for an electrical current in a circuit. It is typically used to divert current away from a system or component in order to prevent overcurrent. Electrical shunts are commonly used in a variety of applications including power distribution systems, electrical measurement systems, automotive and marine applications.

<span class="mw-page-title-main">Wattmeter</span> Device that measures electric power

The wattmeter is an instrument for measuring the electric active power in watts of any given circuit. Electromagnetic wattmeters are used for measurement of utility frequency and audio frequency power; other types are required for radio frequency measurements.

<span class="mw-page-title-main">Potentiostat</span> Electronic system controlling a three electrode cell

A potentiostat is the electronic hardware required to control a three electrode cell and run most electroanalytical experiments. A Bipotentiostat and polypotentiostat are potentiostats capable of controlling two working electrodes and more than two working electrodes, respectively.

<span class="mw-page-title-main">Test probe</span>

A test probe is a physical device used to connect electronic test equipment to a device under test (DUT). Test probes range from very simple, robust devices to complex probes that are sophisticated, expensive, and fragile. Specific types include test prods, oscilloscope probes and current probes. A test probe is often supplied as a test lead, which includes the probe, cable and terminating connector.

<span class="mw-page-title-main">Transformer types</span> Overview of electrical transformer types

Various types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

In electrical engineering, a balanced circuit is electronic circuitry for use with a balanced line, or the balanced line itself. Balanced lines are a common method of transmitting many types of electrical signals between two points on two wires. In a balanced line, the two signal lines are of a matched impedance to help ensure that interference, induced in the line, is common-mode and can be removed at the receiving end by circuitry with good common-mode rejection. To maintain the balance, circuit blocks which interface to the line or are connected in the line must also be balanced.

<span class="mw-page-title-main">Gyrator–capacitor model</span> Model for magnetic circuits

The gyrator–capacitor model - sometimes also the capacitor-permeance model - is a lumped-element model for magnetic circuits, that can be used in place of the more common resistance–reluctance model. The model makes permeance elements analogous to electrical capacitance rather than electrical resistance. Windings are represented as gyrators, interfacing between the electrical circuit and the magnetic model.

The Miller theorem refers to the process of creating equivalent circuits. It asserts that a floating impedance element, supplied by two voltage sources connected in series, may be split into two grounded elements with corresponding impedances. There is also a dual Miller theorem with regards to impedance supplied by two current sources connected in parallel. The two versions are based on the two Kirchhoff's circuit laws.

<span class="mw-page-title-main">Class of accuracy in electrical measurements</span> Accuracy in electrical measurement

In electrical engineering class of accuracy is a figure which represents the error tolerance of a measuring device.

A blocked rotor test is conducted on an induction motor. It is also known as short-circuit test, locked rotor test or stalled torque test. From this test, short-circuit current at normal voltage, power factor on short circuit, total leakage reactance, and starting torque of the motor can be found. It is very important to know a motor's starting torque since if it is not enough to overcome the initial friction of its intended load then it will remain stationary while drawing an excessive current and rapidly overheat. The test may be conducted at lower voltage because at the normal voltage the current through the windings would be high enough to rapidly overheat and damage them. The test may still be conducted at full voltage if it is brief enough to avoid overheating the windings or overloading the starting circuits, but requires much more care to be taken while performing the test. The blocked rotor torque test is less significant on wound-rotor motors because the starting torque of these wound-rotor motors depend upon the external resistance added. However, it may still be used to characterise the motor.

<span class="mw-page-title-main">Open-circuit test</span> Test used in electrical engineering

The open-circuit test, or no-load test, is one of the methods used in electrical engineering to determine the no-load impedance in the excitation branch of a transformer. The no load is represented by the open circuit, which is represented on the right side of the figure as the "hole" or incomplete part of the circuit.