Electrical insulation paper

Last updated
WIMA metallized paper (MP) capacitors rated X2, or "across the line" operation (typically in EMI suppression filters). These can safely connected to low-impedance AC mains at rated AC voltage (here, 250 and 275V). "Ordinary" capacitors may not be connected "across the line" even if their DC ratings are well above AC voltage. 40/110/56 marking denotes climate conditions per IEC 60068-1 (-40@C to +110@C). MP3-X2-P1180582b.JPG
WIMA metallized paper (MP) capacitors rated X2, or "across the line" operation (typically in EMI suppression filters). These can safely connected to low-impedance AC mains at rated AC voltage (here, 250 and 275V). "Ordinary" capacitors may not be connected "across the line" even if their DC ratings are well above AC voltage. 40/110/56 marking denotes climate conditions per IEC 60068–1 (-40˚C to +110˚C).

Electrical insulation papers are paper types that are used as electrical insulation in many applications due to pure cellulose having outstanding electrical properties. Cellulose is a good insulator and is also polar, having a dielectric constant significantly greater than one. [1] Electrical paper products are classified by their thickness, with tissue considered papers less than 1.5 mils (0.0381 mm) thickness, and board considered more than 20 mils (0.508 mm) thickness. [2]

Contents

History

The use of paper board as electrical insulation paper started in the early-mid 20th century. Since the need for high voltage electrical transformers, there has been a need for an insulating material that could withstand the high electrical and physical stresses experienced around a core and windings. Pressboard, a board made by compressing layers of paper together and drying them, has been used for installation purposes in many of the first electrical machines. However, as electrical technology increased, the need for a higher density material that was capable of insulating larger and higher voltage transformers grew. In the late 1920s, Hans Tschudi-Faude became the director of H. Weidmann Limited and began developing a type of pressboard that would meet the higher standards needed for the newer, more powerful transformers. Unlike older methods of pressboard production, Transformerboard was not based on used paper or cotton waste but was made with high-grade sulfate cellulose. The new product was made purely out of cellulose without a resin or binder, improving electrical insulation capabilities and could be completely dried, degassed, and oil impregnated. The new product became famous under the name Transformerboard. Throughout the 1930s, new methods of production and advances in understanding replaced almost all insulating parts of transformers with parts made from transformer board.

Production

The more demanding application the cleaner the paper needs to be. Paper machines are run with deionised or even distilled process water when producing higher grades of electrical insulation paper. Electrical insulation papers are made from well delignified unbleached kraft pulp.

Applications

Cable paper

Electrical cables are categorized by the voltage and current used. Telephone cables have moderate voltage and current associated with cables leading moderate electric current or transmitting electrical signals. The telephone cables have a large number of conductors that are individually insulated. The paper needs to be thin (30-40 g/m2). A normal power cable needs more insulation and therefore paper with higher paper density is used, normally 60-190 g/m2. The paper needs to be strong, elastic, uniform and free of holes or debris. These applications are being replaced by plastic insulation.

High voltage power cable paper

Submarine power cables at very high voltages (> 400 kV) are a very demanding application. The paper is normally 65-155 g/m2 and mostly produced on two ply paper machines. An advantage of using paper in sea cables is that in case of leakage, the paper will swell and prevent water from flowing along the cable.

Capacitor tissue

This paper is used in capacitors and is an extremely clean and thin tissue paper (normally 6-12 g/m2) that is super calendered. The pulp is clean unbleached kraft pulp that is extremely refined. The paper is made on small paper machines with slow speeds because the stock has to be drained very slowly.

Transformer board

Transformer board is used mainly in oil-filled transformers where a solid insulating structure is needed. This is a pressboard up to 8 mm in thickness. The board is built up wet on forming cylinders and cut off when at the desired thickness. This makes a sheet with the size of the width and circumference of the drum. The wet sheets are hot- or cold-press dried and finished on separate machines.

See also

Related Research Articles

<span class="mw-page-title-main">Insulator (electricity)</span> Material that does not conduct an electric current

An electrical insulator is a material in which electric current does not flow freely. The atoms of the insulator have tightly bound electrons which cannot readily move. Other materials—semiconductors and conductors—conduct electric current more easily. The property that distinguishes an insulator is its resistivity; insulators have higher resistivity than semiconductors or conductors. The most common examples are non-metals.

<span class="mw-page-title-main">Transformer</span> Device to couple energy between circuits

In electrical engineering, a transformer is a passive component that transfers electrical energy from one electrical circuit to another circuit, or multiple circuits. A varying current in any coil of the transformer produces a varying magnetic flux in the transformer's core, which induces a varying electromotive force (EMF) across any other coils wound around the same core. Electrical energy can be transferred between separate coils without a metallic (conductive) connection between the two circuits. Faraday's law of induction, discovered in 1831, describes the induced voltage effect in any coil due to a changing magnetic flux encircled by the coil.

In electrical engineering, partial discharge (PD) is a localized dielectric breakdown (DB) of a small portion of a solid or fluid electrical insulation (EI) system under high voltage (HV) stress. While a corona discharge (CD) is usually revealed by a relatively steady glow or brush discharge (BD) in air, partial discharges within solid insulation system are not visible.

<span class="mw-page-title-main">Lamination</span> Technique of fusing layers of material

Lamination is the technique/process of manufacturing a material in multiple layers, so that the composite material achieves improved strength, stability, sound insulation, appearance, or other properties from the use of the differing materials, such as plastic. A laminate is a layered object or material assembled using heat, pressure, welding, or adhesives. Various coating machines, machine presses and calendering equipment are used.

<span class="mw-page-title-main">Electrical wiring</span> Electrical installation of cabling

Electrical wiring is an electrical installation of cabling and associated devices such as switches, distribution boards, sockets, and light fittings in a structure.

<span class="mw-page-title-main">Power cable</span> Bundle of wires for transmitting electricity

A power cable is an electrical cable, an assembly of one or more electrical conductors, usually held together with an overall sheath. The assembly is used for transmission of electrical power. Power cables may be installed as permanent wiring within buildings, buried in the ground, run overhead, or exposed. Power cables that are bundled inside thermoplastic sheathing and that are intended to be run inside a building are known as NM-B.

Transformer oil or insulating oil is an oil that is stable at high temperatures and has excellent electrical insulating properties. It is used in oil-filled wet transformers, some types of high-voltage capacitors, fluorescent lamp ballasts, and some types of high-voltage switches and circuit breakers. Its functions are to insulate, suppress corona discharge and arcing, and to serve as a coolant.

<span class="mw-page-title-main">Pulp mill</span> Facility which pulps wood or plant fibre

A pulp mill is a manufacturing facility that converts wood chips or other plant fiber sources into a thick fiber board which can be shipped to a paper mill for further processing. Pulp can be manufactured using mechanical, semi-chemical, or fully chemical methods. The finished product may be either bleached or non-bleached, depending on the customer requirements.

<span class="mw-page-title-main">Kraft paper</span> Paper or paperboard produced from chemical pulp produced in the kraft process

Kraft paper or kraft is paper or paperboard (cardboard) produced from chemical pulp produced in the kraft process.

<span class="mw-page-title-main">Bushing (electrical)</span> Hollow electrical insulator

In electric power, a bushing is a hollow electrical insulator that allows an electrical conductor to pass safely through a conducting barrier such as the case of a transformer or circuit breaker without making electrical contact with it. Bushings are typically made from porcelain, though other insulating materials are also used.

<span class="mw-page-title-main">Fiberboard</span> Engineered wood product made out of wood fibers

Fiberboard or fibreboard is a type of engineered wood product that is made out of wood fibers. Types of fiberboard include particle board or low-density fiberboard (LDF), medium-density fiberboard (MDF), and hardboard or high-density fiberboard (HDF).

<span class="mw-page-title-main">Magnet wire</span> Coated wire for construction of coils

Magnet wire or enameled wire is a copper or aluminium wire coated with a very thin layer of insulation. It is used in the construction of transformers, inductors, motors, generators, speakers, hard disk head actuators, electromagnets, electric guitar pickups, and other applications that require tight coils of insulated wire.

<span class="mw-page-title-main">Building insulation material</span> Insulation material

Building insulation materials are the building materials that form the thermal envelope of a building or otherwise reduce heat transfer.

<span class="mw-page-title-main">Cellulose insulation</span>

Cellulose insulation is plant fiber used in wall and roof cavities to insulate, draught proof and reduce noise. Building insulation in general is low-thermal-conductivity material used to reduce building heat loss and gain and reduce noise transmission.

The Comparative Tracking Index (CTI) is used to measure the electrical breakdown (tracking) properties of an insulating material. Tracking is an electrical breakdown on the surface of an insulating material wherein an initial exposure to electrical arcing heat carbonizes the material. The carbonized areas are more conductive than the pristine insulator, increasing current flow, resulting in increased heat generation, and eventually the insulation becomes completely conductive.

<span class="mw-page-title-main">Vulcanized fibre</span>

Vulcanized fibre also known as red fibre is a laminated plastic composed of only cellulose. This material is a tough, resilient, hornlike material that is lighter than aluminium, tougher than leather, and stiffer than most thermoplastics. The newer wood-laminating grade of vulcanized fibre is used to strengthen wood laminations used in skis, skateboards, support beams and as a sub-laminate under thin wood veneers.

<span class="mw-page-title-main">High-voltage cable</span> Cable used for electric power transmission at high voltage

A high-voltage cable, sometimes called a high-tension cable, is a cable used for electric power transmission at high voltage. A cable includes a conductor and insulation. Cables are considered to be fully insulated. This means that they have a fully rated insulation system that will consist of insulation, semi-con layers, and a metallic shield. This is in contrast to an overhead line, which may include insulation but not fully rated for operating voltage. High-voltage cables of differing types have a variety of applications in instruments, ignition systems, and alternating current (AC) and direct current (DC) power transmission. In all applications, the insulation of the cable must not deteriorate due to the high-voltage stress, ozone produced by electric discharges in air, or tracking. The cable system must prevent contact of the high-voltage conductor with other objects or persons, and must contain and control leakage current. Cable joints and terminals must be designed to control the high-voltage stress to prevent the breakdown of the insulation.

The stacking factor is a measure used in electrical transformer design and some other electrical machines. It is the ratio of the effective cross-sectional area of the transformer core to the physical cross-sectional area of the transformer core. The two are different because of the way cores are constructed.

Transformer oil, a type of insulating and cooling oil used in transformers and other electrical equipment, needs to be tested periodically to ensure that it is still fit for purpose. This is because it tends to deteriorate over time. Testing sequences and procedures are defined by various international standards, many of them set by ASTM. Transformer oil testing consists of measuring breakdown voltage and other physical and chemical properties of samples of the oil, either in a laboratory or using portable test equipment on-site.

References

  1. Paulapuro, Hannu (2000). "5". Paper and Board grades. Papermaking Science and Technology. Vol. 18. Finland: Fapet Oy. pp. 106–108. ISBN   952-5216-18-7.
  2. ASTM Paper and paperboard: characteristics, nomenclature, and significance of tests, ASTM, 1951 page 26