Voltage regulation

Last updated

In electrical engineering, particularly power engineering, voltage regulation is a measure of change in the voltage magnitude between the sending and receiving end of a component, such as a transmission or distribution line. Voltage regulation describes the ability of a system to provide near constant voltage over a wide range of load conditions. The term may refer to a passive property that results in more or less voltage drop under various load conditions, or to the active intervention with devices for the specific purpose of adjusting voltage.

Contents

Electrical power systems

In electrical power systems, voltage regulation is a dimensionless quantity defined at the receiving end of a transmission line as:

[1]

where Vnl is voltage at no load and Vfl is voltage at full load. The percent voltage regulation of an ideal transmission line, as defined by a transmission line with zero resistance and reactance, would equal zero due to Vnl equaling Vfl as a result of there being no voltage drop along the line. This is why a smaller value of Voltage Regulation is usually beneficial, indicating that the line is closer to ideal.

The Voltage Regulation formula could be visualized with the following: "Consider power being delivered to a load such that the voltage at the load is the load's rated voltage VRated, if then the load disappears, the voltage at the point of the load will rise to Vnl."

Voltage regulation in transmission lines occurs due to the impedance of the line between its sending and receiving ends. Transmission lines intrinsically have some amount of resistance, inductance, and capacitance that all change the voltage continuously along the line. Both the magnitude and phase angle of voltage change along a real transmission line. The effects of line impedance can be modeled with simplified circuits such as the short line approximation (least accurate), the medium line approximation (more accurate), and the long line approximation (most accurate).

Short line approximation. Here the line impedance Z = R + joL. Short Line Approximation.png
Short line approximation. Here the line impedance Z = R + jωL.

The short line approximation ignores capacitance of the transmission line and models the resistance and reactance of the transmission line as a simple series resistor and inductor. This combination has impedance R + jωL or R + jX. There is a single line current I = IS = IR in the short line approximation, different from the medium and long line. The medium length line approximation takes into account the shunt admittance, usually pure capacitance, by distributing half the admittance at the sending and receiving end of the line. This configuration is often referred to as a nominal - π. The long line approximation takes these lumped impedance and admittance values and distributes them uniformly along the length of the line. The long line approximation therefore requires the solving of differential equations and results in the highest degree of accuracy. [2]

In the voltage regulation formula, Vno load is the voltage measured at the receiving end terminals when the receiving end is an open circuit. The entire short line model is an open circuit in this condition, and no current flows in an open circuit, so I = 0 A and the voltage drop across the line given by Ohm’s law Vline drop = IZline is 0 V. The sending and receiving end voltages are thus the same. This value is what the voltage at the receiving end would be if the transmission line had no impedance. The voltage would not be changed at all by the line, which is an ideal scenario in power transmission.

Vfull load is the voltage across the load at the receiving end when the load is connected and current flows in the transmission line. Now Vline drop = IZline is nonzero, so the voltages and the sending and receiving ends of the transmission line are not equal. The current I can be found by solving Ohm’s law using a combined line and load impedance: . Then the VR, full load is given by .

The effects of this modulation on voltage magnitude and phase angle is illustrated using phasor diagrams that map VR, VS, and the resistive and inductive components of Vline drop. Three power factor scenarios are shown, where (a) the line serves an inductive load so the current lags receiving end voltage, (b) the line serves a completely real load so the current and receiving end voltage are in phase, and (c) the line serves a capacitive load so the current leads receiving end voltage. In all cases the line resistance R causes a voltage drop that is in phase with current, and the reactance of the line X causes a voltage drop that leads current by 90 degrees. These successive voltage drops are summed to the receiving end voltage, tracing backward from VR to VS in the short line approximation circuit. The vector sum of VR and the voltage drops equals VS, and it is apparent in the diagrams that VS does not equal VR in magnitude or phase angle.

Voltage phasor diagrams for a short transmission line serving lagging, in-phase, and leading loads. Short line voltage phasor diagrams.png
Voltage phasor diagrams for a short transmission line serving lagging, in-phase, and leading loads.

The diagrams show that the phase angle of current in the line affects voltage regulation significantly. Lagging current in (a) makes the required magnitude of sending end voltage quite large relative to the receiving end. The phase angle difference between sending and receiving end is minimized, however. Leading current in (c) actually allows the sending end voltage magnitude be smaller than the receiving end magnitude, so the voltage counterintuitively increases along the line. In-phase current in (b) does little to affect the magnitude of voltage between sending and receiving ends, but the phase angle shifts considerably.

Real transmission lines typically serve inductive loads, which are the motors that exist everywhere in modern electronics and machines. Transferring a large amount of reactive power Q to inductive loads makes the line current lag voltage, and the voltage regulation is characterized by decrease in voltage magnitude. In transferring a large amount of real power P to real loads, current is mostly in phase with voltage. The voltage regulation in this scenario is characterized by a decrease in phase angle rather than magnitude.

Sometimes, the term voltage regulation is used to describe processes by which the quantity VR is reduced, especially concerning special circuits and devices for this purpose (see below).

Electronic power supply parameters

The quality of a system's voltage regulation is described by three main parameters:

ParameterSymbolDescription
Line regulation SvMeasure of the ability to maintain a constant output voltage, regardless of changes to the input voltage
Load regulation RoMeasure of the ability to maintain a constant output voltage, regardless of the size of the system's load
Temperature dependenceSTMeasure of the ability to maintain a constant output voltage, regardless of variations in temperature of electrical components within the system, especially semiconductor based devices.

Distribution feeder regulation

Electric utilities aim to provide service to customers at a specific voltage level, for example, 220 V or 240 V. However, due to Kirchhoff's Laws, the voltage magnitude and thus the service voltage to customers will in fact vary along the length of a conductor such as a distribution feeder (see Electric power distribution). Depending on law and local practice, actual service voltage within a tolerance band such as ±5% or ±10% may be considered acceptable. In order to maintain voltage within tolerance under changing load conditions, various types of devices are traditionally employed: [3]

A new generation of devices for voltage regulation based on solid-state technology are in the early commercialization stages. [4]

Distribution regulation involves a "regulation point": the point at which the equipment tries to maintain constant voltage. Customers further than this point observe an expected effect: higher voltage at light load, and lower voltage at high load. Customers closer than this point experience the opposite effect: higher voltage at high load, and lower voltage at light load.

Complications due to distributed generation

Distributed generation, in particular photovoltaics connected at the distribution level, presents a number of significant challenges for voltage regulation.

Typical voltage profile expected on a distribution feeder with no DG. This voltage profile results from current through feeders with no DG decreases with distance from the substation. Feeder voltage profile.png
Typical voltage profile expected on a distribution feeder with no DG. This voltage profile results from current through feeders with no DG decreases with distance from the substation.

Conventional voltage regulation equipment works under the assumption that line voltage changes predictably with distance along the feeder. Specifically, feeder voltage drops with increasing distance from the substation due to line impedance and the rate of voltage drop decreases farther away from the substation. [5] However, this assumption may not hold when DG is present. For example, a long feeder with a high concentration of DG at the end will experience significant current injection at points where the voltage is normally lowest. If the load is sufficiently low, current will flow in the reverse direction (i.e. towards the substation), resulting in a voltage profile that increases with distance from the substation. This inverted voltage profile may confuse conventional controls. In one such scenario, load tap changers expecting voltage to decrease with distance from the substation may choose an operating point that in fact causes voltage down the line to exceed operating limits. [6]

Comparison of 24-hour voltage swings on a feeder with no PV, 20% PV and 20% PV with volt-VAR control. Feeder Voltage Response with Advanced VAR Control.png
Comparison of 24-hour voltage swings on a feeder with no PV, 20% PV and 20% PV with volt-VAR control.

The voltage regulation issues caused by DG at the distribution level are complicated by lack of utility monitoring equipment along distribution feeders. The relative scarcity of information on distribution voltages and loads makes it difficult for utilities to make adjustments necessary to keep voltage levels within operating limits. [7]

Although DG poses a number of significant challenges for distribution level voltage regulation, if combined with intelligent power electronics DG can actually serve to enhance voltage regulation efforts. [8] One such example is PV connected to the grid through inverters with volt-VAR control. In a study conducted jointly by the National Renewable Energy Laboratory (NREL) and Electric Power Research Institute (EPRI), when volt-VAR control was added to a distribution feeder with 20% PV penetration, the diurnal voltage swings on the feeder were significantly reduced. [9]

Transformers

Real transformer equivalent circuit Transformer equivalent circuit-2.svg
Real transformer equivalent circuit

One case of voltage regulation is in a transformer. The unideal components of the transformer cause a change in voltage when current flows. Under no load, when no current flows through the secondary coils, Vnl is given by the ideal model, where VS = VP*NS/NP. Looking at the equivalent circuit and neglecting the shunt components, as is a reasonable approximation, one can refer all resistance and reactance to the secondary side and clearly see that the secondary voltage at no load will indeed be given by the ideal model. In contrast, when the transformer delivers full load, a voltage drop occurs over the winding resistance, causing the terminal voltage across the load to be lower than anticipated. By the definition above, this leads to a nonzero voltage regulation which must be considered in use of the transformer. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Electric power transmission</span> Bulk movement of electrical energy

Electric power transmission is the bulk movement of electrical energy from a generating site, such as a power plant, to an electrical substation. The interconnected lines that facilitate this movement form a transmission network. This is distinct from the local wiring between high-voltage substations and customers, which is typically referred to as electric power distribution. The combined transmission and distribution network is part of electricity delivery, known as the electrical grid.

<span class="mw-page-title-main">Three-phase electric power</span> Common electrical power generation, transmission and distribution method for alternating currents

Three-phase electric power is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. It is a type of polyphase system employing three wires and is the most common method used by electrical grids worldwide to transfer power.

In telecommunications and professional audio, a balanced line or balanced signal pair is an electrical circuit consisting of two conductors of the same type, both of which have equal impedances along their lengths, to ground, and to other circuits. The primary advantage of the balanced line format is good rejection of common-mode noise and interference when fed to a differential device such as a transformer or differential amplifier.

<span class="mw-page-title-main">Reflection coefficient</span> Measure of wave reflectivity

In physics and electrical engineering the reflection coefficient is a parameter that describes how much of a wave is reflected by an impedance discontinuity in the transmission medium. It is equal to the ratio of the amplitude of the reflected wave to the incident wave, with each expressed as phasors. For example, it is used in optics to calculate the amount of light that is reflected from a surface with a different index of refraction, such as a glass surface, or in an electrical transmission line to calculate how much of the electromagnetic wave is reflected by an impedance discontinuity. The reflection coefficient is closely related to the transmission coefficient. The reflectance of a system is also sometimes called a "reflection coefficient".

<span class="mw-page-title-main">Standing wave ratio</span> Measure used in radio engineering and telecommunications

In radio engineering and telecommunications, standing wave ratio (SWR) is a measure of impedance matching of loads to the characteristic impedance of a transmission line or waveguide. Impedance mismatches result in standing waves along the transmission line, and SWR is defined as the ratio of the partial standing wave's amplitude at an antinode (maximum) to the amplitude at a node (minimum) along the line.

<span class="mw-page-title-main">Electrical substation</span> Part of an electrical transmission, and distribution system

A substation is a part of an electrical generation, transmission, and distribution system. Substations transform voltage from high to low, or the reverse, or perform any of several other important functions. Between the generating station and consumer, electric power may flow through several substations at different voltage levels. A substation may include transformers to change voltage levels between high transmission voltages and lower distribution voltages, or at the interconnection of two different transmission voltages. They are a common component of the infrastructure. There are 55,000 substations in the United States.

<span class="mw-page-title-main">Impedance matching</span> Adjusting input/output impedances of an electrical circuit for some purpose

In electrical engineering, impedance matching is the practice of designing or adjusting the input impedance or output impedance of an electrical device for a desired value. Often, the desired value is selected to maximize power transfer or minimize signal reflection. For example, impedance matching typically is used to improve power transfer from a radio transmitter via the interconnecting transmission line to the antenna. Signals on a transmission line will be transmitted without reflections if the transmission line is terminated with a matching impedance.

<span class="mw-page-title-main">Single-wire earth return</span> Supply energy using single wire with earth as return

Single-wire earth return (SWER) or single-wire ground return is a single-wire transmission line which supplies single-phase electric power from an electrical grid to remote areas at lowest cost. Its distinguishing feature is that the earth is used as the return path for the current, to avoid the need for a second wire to act as a return path.

<span class="mw-page-title-main">Input impedance</span> Measure of the opposition to current flow by an external electrical load

In electrical engineering, the input impedance of an electrical network is the measure of the opposition to current (impedance), both static (resistance) and dynamic (reactance), into a load network that is external to the electrical source network. The input admittance is a measure of the load network's propensity to draw current. The source network is the portion of the network that transmits power, and the load network is the portion of the network that consumes power.

In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as voltages, voltage angles, real power and reactive power. It analyzes the power systems in normal steady-state operation.

<span class="mw-page-title-main">Ground and neutral</span> In mains electricity, part of a circuit connected to ground or earth

In electrical engineering, ground and neutral are circuit conductors used in alternating current (AC) electrical systems. The ground circuit is connected to earth, and neutral circuit is usually connected to ground. As the neutral point of an electrical supply system is often connected to earth ground, ground and neutral are closely related. Under certain conditions, a conductor used to connect to a system neutral is also used for grounding (earthing) of equipment and structures. Current carried on a grounding conductor can result in objectionable or dangerous voltages appearing on equipment enclosures, so the installation of grounding conductors and neutral conductors is carefully defined in electrical regulations. Where a neutral conductor is used also to connect equipment enclosures to earth, care must be taken that the neutral conductor never rises to a high voltage with respect to local ground.

<span class="mw-page-title-main">Current transformer</span> Transformer used to scale alternating current, used as sensor for AC power

A current transformer (CT) is a type of transformer that is used to reduce or multiply an alternating current (AC). It produces a current in its secondary which is proportional to the current in its primary.

<span class="mw-page-title-main">Quadrature booster</span>

A phase angle regulating transformer, phase angle regulator, phase-shifting transformer, phase shifter, or quadrature booster, is a specialised form of transformer used to control the flow of real power on three-phase electric transmission networks.

In an electric power system, a fault or fault current is any abnormal electric current. For example, a short circuit is a fault in which a live wire touches a neutral or ground wire. An open-circuit fault occurs if a circuit is interrupted by a failure of a current-carrying wire or a blown fuse or circuit breaker. In three-phase systems, a fault may involve one or more phases and ground, or may occur only between phases. In a "ground fault" or "earth fault", current flows into the earth. The prospective short-circuit current of a predictable fault can be calculated for most situations. In power systems, protective devices can detect fault conditions and operate circuit breakers and other devices to limit the loss of service due to a failure.

<span class="mw-page-title-main">Transformer types</span> Overview of electrical transformer types

A variety of types of electrical transformer are made for different purposes. Despite their design differences, the various types employ the same basic principle as discovered in 1831 by Michael Faraday, and share several key functional parts.

<span class="mw-page-title-main">Ferranti effect</span> Increase in voltage at a long AC power line

In electrical engineering, the Ferranti effect is the increase in voltage occurring at the receiving end of a very long AC electric power transmission line, relative to the voltage at the sending end, when the load is very small, or no load is connected. It can be stated as a factor, or as a percent increase.

<span class="mw-page-title-main">SEPTA's 25 Hz traction power system</span>

The Southeastern Pennsylvania Transportation Authority (SEPTA) operates a 25 Hz traction power system in the vicinity of Philadelphia, that it inherited from the Reading Company. This system is separate from, but similar to, the system built by the Pennsylvania Railroad (PRR), which is now operated by Amtrak. SEPTA's trains can run over either system because the voltage and frequency presented to the locomotive are essentially identical. However, the ex-Reading system is not electrically connected to the ex-PRR system.

In an electric power transmission grid system, switchyard reactors are large inductors installed at substations to help stabilize the power system.

This glossary of electrical and electronics engineering is a list of definitions of terms and concepts related specifically to electrical engineering and electronics engineering. For terms related to engineering in general, see Glossary of engineering.

<span class="mw-page-title-main">Performance and modelling of AC transmission</span>

Performance modelling is the abstraction of a real system into a simplified representation to enable the prediction of performance. The creation of a model can provide insight into how a proposed or actual system will or does work. This can, however, point towards different things to people belonging to different fields of work.

References

  1. Gönen, Turan (2012). Electrical machines with MATLAB(R). CRC Press. p. 337. ISBN   978-1-43-987799-9.
  2. 1 2 Grainger, John J and William D Stephenson (1994). Power System Analysis and Design. New York: McGraw-Hill. pp. 196–214. ISBN   978-0070612938.
  3. von Meier, Alexandra (2006). Electric Power Systems: A Conceptual Introduction. Wiley-IEEE. pp. 184–188. ISBN   0471178594.
  4. "Greentechmedia article on voltage-correcting grid sensor" . Retrieved May 4, 2013.
  5. von Meier, Alexandra (2006). Electric Power Systems: A Conceptual Introduction. Wiley-IEEE Press. p. 186. ISBN   0471178594.
  6. "Power Quality Impact of Distributed Generation: Effect on Steady State Voltage Regulation": 7. CiteSeerX   10.1.1.202.5283 .{{cite journal}}: Cite journal requires |journal= (help)
  7. Turitsyn, Konstantin S. (2010). "Statistics of voltage drop in radial distribution circuits: a dynamic programming approach". arXiv: 1006.0158 [math.OC].
  8. "Impact of Distributed Generation on Voltage Profile in Deregulated Distribution System" (PDF). p. 6. Retrieved May 5, 2015.
  9. "Updating Interconnection Screens for PV System Integration" (PDF). p. 20. Retrieved May 5, 2015.