Reciprocity (electrical networks)

Last updated

Reciprocity in electrical networks is a property of a circuit that relates voltages and currents at two points. The reciprocity theorem states that the current at one point in a circuit due to a voltage at a second point is the same as the current at the second point due to the same voltage at the first. The reciprocity theorem is valid for almost all passive networks. The reciprocity theorem is a feature of a more general principle of reciprocity in electromagnetism.

Contents

Description

If a current, , injected into port A produces a voltage, , at port B and injected into port B produces at port A, then the network is said to be reciprocal. Equivalently, reciprocity can be defined by the dual situation; applying voltage, , at port A producing current at port B and at port B producing current at port A. [1] In general, passive networks are reciprocal. Any network that consists entirely of ideal capacitances, inductances (including mutual inductances), and resistances, that is, elements that are linear and bilateral, will be reciprocal. [2] However, passive components that are non-reciprocal do exist. Any component containing ferromagnetic material is likely to be non-reciprocal. Examples of passive components deliberately designed to be non-reciprocal include circulators and isolators. [3]

The transfer function of a reciprocal network has the property that it is symmetrical about the main diagonal if expressed in terms of a z-parameter, y-parameter, or s-parameter matrix. A non-symmetrical matrix implies a non-reciprocal network. A symmetric matrix does not imply a symmetric network. [4]

In some parametisations of networks, the representative matrix is not symmetrical for reciprocal networks. Common examples are h-parameters and ABCD-parameters, but they all have some other condition for reciprocity that can be calculated from the parameters. For h-parameters the condition is and for the ABCD parameters it is . These representations mix voltages and currents in the same column vector and therefore do not even have matching units in transposed elements. [5]

Example

An example of reciprocity can be demonstrated using an asymmetrical resistive attenuator. An asymmetrical network is chosen as the example because a symmetrical network is fairly self-evidently reciprocal.

An asymmetrical attenuator in Pi formation with resistor values 20, 12 and 8 left to right Reciprocity example circuit.svg
An asymmetrical attenuator in Pi formation with resistor values 20, 12 and 8 left to right

Injecting six amps into port 1 of this network produces 24 volts at port 2.

The previous attenuator showing port 1 current splitting to 3 amps in each branch Reciprocity example ports 1 to 2.svg
The previous attenuator showing port 1 current splitting to 3 amps in each branch

Injecting six amps into port 2 produces 24 volts at port 1.

The previous attenuator showing port 2 current splitting to 1.2 and 4.8 amps the horizontal and vertical branches respectively Reciprocity example ports 2 to 1.svg
The previous attenuator showing port 2 current splitting to 1.2 and 4.8 amps the horizontal and vertical branches respectively

Hence, the network is reciprocal. In this example, the port that is not injecting current is left open circuit. This is because a current generator applying zero current is an open circuit. If, on the other hand, one wished to apply voltages and measure the resulting current, then the port to which the voltage is not applied would be made short circuit. This is because a voltage generator applying zero volts is a short circuit.

Proof

Reciprocity of electrical networks is a special case of Lorentz reciprocity, but it can also be proven more directly from network theorems. This proof shows reciprocity for a two-node network in terms of its admittance matrix, and then shows reciprocity for a network with an arbitrary number of nodes by an induction argument. A linear network can be represented as a set of linear equations through nodal analysis. These equations can be expressed in the form of an admittance matrix, [6]

where

is the current injected into node k by a generator
is the voltage at node k
(jk) is the negative of the admittance connected between nodes j and k
is the sum of the admittances connected to node k.

If we further require that network is made up of passive, bilateral elements, then

since the admittance connected between nodes j and k is the same element as the admittance connected between nodes k and j. The matrix is therefore symmetrical. [7] For the case where the matrix reduces to,

.

From which it can be seen that,

and

But since then,

which is synonymous with the condition for reciprocity. In words, the ratio of the current at one port to the voltage at another is the same ratio if the ports being driven and measured are interchanged. Thus reciprocity is proven for the case of . [8]

For the case of a matrix of arbitrary size, the order of the matrix can be reduced through node elimination. After eliminating the sth node, the new admittance matrix will have the form,

It can be seen that this new matrix is also symmetrical. Nodes can continue to be eliminated in this way until only a 2×2 symmetrical matrix remains involving the two nodes of interest. Since this matrix is symmetrical it is proved that reciprocity applies to a matrix of arbitrary size when one node is driven by a voltage and current measured at another. A similar process using the impedance matrix from mesh analysis demonstrates reciprocity where one node is driven by a current and voltage is measured at another. [9]

Related Research Articles

Matrix multiplication Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:

In statistics, the Gauss–Markov theorem states that the ordinary least squares (OLS) estimator has the lowest sampling variance within the class of linear unbiased estimators, if the errors in the linear regression model are uncorrelated, have equal variances and expectation value of zero. The errors do not need to be normal, nor do they need to be independent and identically distributed. The requirement that the estimator be unbiased cannot be dropped, since biased estimators exist with lower variance. See, for example, the James–Stein estimator, ridge regression, or simply any degenerate estimator.

In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices. Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned.

In linear algebra, linear transformations can be represented by matrices. If is a linear transformation mapping to and is a column vector with entries, then

A network, in the context of electrical engineering and electronics, is a collection of interconnected components. Network analysis is the process of finding the voltages across, and the currents through, all network components. There are many techniques for calculating these values. However, for the most part, the techniques assume linear components. Except where stated, the methods described in this article are applicable only to linear network analysis.

Two-port network

A two-port network is an electrical network (circuit) or device with two pairs of terminals to connect to external circuits. Two terminals constitute a port if the currents applied to them satisfy the essential requirement known as the port condition: the electric current entering one terminal must equal the current emerging from the other terminal on the same port. The ports constitute interfaces where the network connects to other networks, the points where signals are applied or outputs are taken. In a two-port network, often port 1 is considered the input port and port 2 is considered the output port.

In mathematics, particularly matrix theory, a band matrix or banded matrix is a sparse matrix whose non-zero entries are confined to a diagonal band, comprising the main diagonal and zero or more diagonals on either side.

Scattering parameters or S-parameters describe the electrical behavior of linear electrical networks when undergoing various steady state stimuli by electrical signals.

Nodal analysis

In electric circuits analysis, nodal analysis, node-voltage analysis, or the branch current method is a method of determining the voltage between "nodes" in an electrical circuit in terms of the branch currents.

In power engineering, nodal admittance matrix or Y Matrix or Ybus is an N x N matrix describing a linear power system with N buses. It represents the nodal admittance of the buses in a power system. In realistic systems which contain thousands of buses, the Y matrix is quite sparse. Each bus in a real power system is usually connected to only a few other buses through the transmission lines. The Y Matrix is also one of the data requirements needed to formulate a power flow study.

In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process.

A multi-compartment model is a type of mathematical model used for describing the way materials or energies are transmitted among the compartments of a system. Sometimes, the physical system that we try to model in equations is too complex, so it is much easier to discretize the problem and reduce the number of parameters. Each compartment is assumed to be a homogeneous entity within which the entities being modeled are equivalent. A multi-compartment model is classified as a lumped parameters model. Similar to more general mathematical models, multi-compartment models can treat variables as continuous, such as a differential equation, or as discrete, such as a Markov chain. Depending on the system being modeled, they can be treated as stochastic or deterministic.

Admittance parameters or Y-parameters are properties used in many areas of electrical engineering, such as power, electronics, and telecommunications. These parameters are used to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks. Y parameters are also known as short circuited admittance parameters. They are members of a family of similar parameters used in electronic engineering, other examples being: S-parameters, Z-parameters, H-parameters, T-parameters or ABCD-parameters.

An equivalent impedance is an equivalent circuit of an electrical network of impedance elements which presents the same impedance between all pairs of terminals as did the given network. This article describes mathematical transformations between some passive, linear impedance networks commonly found in electronic circuits.

An antimetric electrical network is an electrical network that exhibits anti-symmetrical electrical properties. The term is often encountered in filter theory, but it applies to general electrical network analysis. Antimetric is the diametrical opposite of symmetric; it does not merely mean "asymmetric". It is possible for networks to be symmetric or antimetric in their electrical properties without being physically or topologically symmetric or antimetric.

In analytical mechanics, the mass matrix is a symmetric matrix M that expresses the connection between the time derivative of the generalized coordinate vector q of a system and the kinetic energy T of that system, by the equation

In control system theory, and various branches of engineering, a transfer function matrix, or just transfer matrix is a generalisation of the transfer functions of single-input single-output (SISO) systems to multiple-input and multiple-output (MIMO) systems. The matrix relates the outputs of the system to its inputs. It is a particularly useful construction for linear time-invariant (LTI) systems because it can be expressed in terms of the s-plane.

Performance and modelling of AC transmission

Performance modelling is the abstraction of a real system into a simplified representation to enable the prediction of performance. The creation of a model can provide insight into how a proposed or actual system will or does work. This can, however, point towards different things to people belonging to different fields of work.

Generalized pencil-of-function method (GPOF), also known as matrix pencil method, is a signal processing technique for estimating a signal or extracting information with complex exponentials. Being similar to Prony and original pencil-of-function methods, it is generally preferred to those for its robustness and computational efficiency.

References

  1. Bakshi & Bakshi, pp. 7-27–7-28
  2. Kumar, p. 700
  3. Harris, p. 632
  4. Zhang & Li, p. 119
  5. Kumar, p. 700
  6. Guillemin, pp. 77–79
  7. Guillemin, p. 79
  8. Guillemin, pp. 148–149
  9. Guillemin, pp. 149–150

Bibliography