Motor soft starter

Last updated
Compact soft starter for a 3 phase machine, 15kW/10HP Carlo Gavazzi RSBT Soft Starter 1.png
Compact soft starter for a 3 phase machine, 15kW/10HP

A motor soft starter is a device used with AC electrical motors to temporarily reduce the load and torque in the powertrain and electric current surge of the motor during start-up. This reduces the mechanical stress on the motor and shaft, as well as the electrodynamic stresses on the attached power cables and electrical distribution network, extending the lifespan of the system. [1] :150

Contents

It can consist of mechanical or electrical devices, or a combination of both. Mechanical soft starters include clutches and several types of couplings using a fluid, magnetic forces, or steel shot to transmit torque, similar to other forms of torque limiter. Electrical soft starters can be any control system that reduces the torque by temporarily reducing the voltage or current input, or a device that temporarily alters how the motor is connected in the electric circuit.

Operating principles

Digital Soft Starter Digital Soft Starter with Motor Protection and In Built By Pass.jpg
Digital Soft Starter

Whenever the armature of an electric motor is moving, both the motor action and generator action are occurring simultaneously; the electromagnetic force produced by generator action opposes the desired motor action and effectively creates a variable motor resistance which increases with motor speed. When a voltage is applied to the motor, this resistance dictates the current drawn by the motor. At rest, the resistance is relatively low, so the starting or inrush current can be high if the full line voltage is applied to the motor. Compared to DC motors, AC motors tend to have significantly higher stator resistance and correspondingly lower inrush current. [1] :24

Nevertheless, across-the line starting of induction motors is accompanied by inrush currents up to 7-10 times higher than running current, and higher efficiency motors can experience inrush currents 10-15 times running current. In addition, starting torque can be up to 3 times higher than running torque. The starting torque transient can create a sudden mechanical stress on the machine, which leads to a reduced service life. Moreover, the high inrush current stresses the power supply, which may lead to voltage dips. As a result, lifespan of sensitive equipment may be reduced. [1] Another common side-effect, especially in residential installations, is voltage sag in the site's power supply created by the high inrush current, visible as flickering lights.

A soft starter continuously controls the motor's voltage supply during the start-up phase. This way, the motor is adjusted to the machine's load behavior. Mechanical operating equipment is accelerated smoothly. This lengthens service life, improves operating behavior, and smooths work flows. Electrical soft starters can use solid state devices to control the current flow and therefore the voltage applied to the motor. They can be connected in series with the line voltage applied to the motor, or can be connected inside the delta (Δ) loop of a delta-connected motor, controlling the voltage applied to each winding. Solid state soft starters can control one or more phases of the voltage applied to the induction motor with the best results achieved by three-phase control. Soft starters controlled via two phases have the disadvantage that the uncontrolled phase will always shows some current unbalance with respect to the controlled phases. Typically, the voltage is controlled by reverse-parallel-connected silicon-controlled rectifiers (thyristors), but in some circumstances with three-phase control, the control elements can be a reverse-parallel-connected SCR and diode. [2] [3]

Another way to limit motor starting current is a series reactor. If an air core is used for the series reactor then a very efficient and reliable soft starter can be designed which is suitable for all types of 3 phase induction motor [ synchronous / asynchronous ] ranging from 25 kW 415 V to 30 MW 11 kV. Using an air core series reactor soft starter is very common practice for applications like pump, compressor, fan etc. Usually high starting torque applications do not use this method.

Applications

Soft starters can be set up to the requirements of the individual application. Compared to variable-frequency drives, soft starters require very few user adjustments. Some soft starters also include a "learning" process to automatically adapt the drive settings to the characteristics of a motor load, to reduce the power inrush requirement at the start. In pump applications, a soft starter can avoid pressure surges that could lead to water hammer . Conveyor belt systems can be smoothly started, avoiding jerk and stress on drive components. Fans or other systems with belt drives can be started slowly to avoid belt slipping as well as air pressure surges. Soft starters are seen in electrical R/C helicopters, and allow the rotor blades to spool-up in a smooth, controlled manner rather than a sudden surge. In all systems, a soft start limits the inrush current and so improves stability of the power supply and reduces transient voltage drops that may affect other loads. [4] [5] [6]

See also

Related Research Articles

<span class="mw-page-title-main">Electric motor</span> Machine that converts electrical energy into mechanical energy

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates in reverse, converting mechanical energy into electrical energy.

<span class="mw-page-title-main">Stepper motor</span> Electric motor for discrete partial rotations

A stepper motor, also known as step motor or stepping motor, is an electrical motor that rotates in a series of small angular steps, instead of continuously. Stepper motors are a type of digital actuators. Stepper motors are an eletromagnetic actuator; it converts electromagnetic energy into mechanical energy to perform mechanical work.

<span class="mw-page-title-main">Induction motor</span> Type of AC electric motor

An induction motor or asynchronous motor is an AC electric motor in which the electric current in the rotor that produces torque is obtained by electromagnetic induction from the magnetic field of the stator winding. An induction motor therefore needs no electrical connections to the rotor. An induction motor's rotor can be either wound type or squirrel-cage type.

<span class="mw-page-title-main">Synchronous motor</span> Type of AC motor

A synchronous electric motor is an AC electric motor in which, at steady state, the rotation of the shaft is synchronized with the frequency of the supply current; the rotation period is exactly equal to an integer number of AC cycles. Synchronous motors use electromagnets as the stator of the motor which create a magnetic field that rotates in time with the oscillations of the current. The rotor with permanent magnets or electromagnets turns in step with the stator field at the same rate and as a result, provides the second synchronized rotating magnet field. A synchronous motor is termed doubly fed if it is supplied with independently excited multiphase AC electromagnets on both the rotor and stator.

A motor controller is a device or group of devices that can coordinate in a predetermined manner the performance of an electric motor. A motor controller might include a manual or automatic means for starting and stopping the motor, selecting forward or reverse rotation, selecting and regulating the speed, regulating or limiting the torque, and protecting against overloads and electrical faults. Motor controllers may use electromechanical switching, or may use power electronics devices to regulate the speed and direction of a motor.

<span class="mw-page-title-main">Brushless DC electric motor</span> Synchronous electric motor powered by an inverter

A brushless DC electric motor (BLDC), also known as an electronically commutated motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields that effectively rotate in space and which the permanent magnet rotor follows. The controller adjusts the phase and amplitude of the DC current pulses to control the speed and torque of the motor. This control system is an alternative to the mechanical commutator (brushes) used in many conventional electric motors.

<span class="mw-page-title-main">DC motor</span> Motor which works on direct current

A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.

<span class="mw-page-title-main">Traction motor</span> An electric motor for vehicle propulsion

A traction motor is an electric motor used for propulsion of a vehicle, such as locomotives, electric or hydrogen vehicles, or electric multiple unit trains.

<span class="mw-page-title-main">Motor–generator</span> Device for converting electrical power to another form

A motor–generator is a device for converting electrical power to another form. Motor–generator sets are used to convert frequency, voltage, or phase of power. They may also be used to isolate electrical loads from the electrical power supply line. Large motor–generators were widely used to convert industrial amounts of power while smaller motor–generators were used to convert battery power to higher DC voltages.

<span class="mw-page-title-main">Inrush current</span> Maximal instantaneous input current drawn by an electrical device when first turned on

Inrush current, input surge current, or switch-on surge is the maximal instantaneous input current drawn by an electrical device when first turned on. Alternating-current electric motors and transformers may draw several times their normal full-load current when first energized, for a few cycles of the input waveform. Power converters also often have inrush currents much higher than their steady-state currents, due to the charging current of the input capacitance. The selection of over-current-protection devices such as fuses and circuit breakers is made more complicated when high inrush currents must be tolerated. The over-current protection must react quickly to overload or short-circuit faults but must not interrupt the circuit when the inrush current flows.

<span class="mw-page-title-main">Variable-frequency drive</span> Type of adjustable-speed drive

A variable-frequency drive is a type of AC motor drive that controls speed and torque by varying the frequency of the input electricity. Depending on its topology, it controls the associated voltage or current variation.

<span class="mw-page-title-main">Universal motor</span> Type of electric motor

The universal motor is a type of electric motor that can operate on either AC or DC power and uses an electromagnet as its stator to create its magnetic field. It is a commutated series-wound motor where the stator's field coils are connected in series with the rotor windings through a commutator. It is often referred to as an AC series motor. The universal motor is very similar to a DC series motor in construction, but is modified slightly to allow the motor to operate properly on AC power. This type of electric motor can operate well on AC because the current in both the field coils and the armature will alternate synchronously with the supply. Hence the resulting mechanical force will occur in a consistent direction of rotation, independent of the direction of applied voltage, but determined by the commutator and polarity of the field coils.

<span class="mw-page-title-main">Motor drive</span>

Motor drive means a system that includes a motor. An adjustable speed motor drive means a system that includes a motor that has multiple operating speeds. A variable speed motor drive is a system that includes a motor and is continuously variable in speed. If the motor is generating electrical energy rather than using it – this could be called a generator drive but is often still referred to as a motor drive.

<span class="mw-page-title-main">Reluctance motor</span> Type of electric motor

A reluctance motor is a type of electric motor that induces non-permanent magnetic poles on the ferromagnetic rotor. The rotor does not have any windings. It generates torque through magnetic reluctance.

<span class="mw-page-title-main">AC motor</span> Electric motor driven by an AC electrical input

An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.

Doubly fed electric machines, also slip-ring generators, are electric motors or electric generators, where both the field magnet windings and armature windings are separately connected to equipment outside the machine.

An induction generator or asynchronous generator is a type of alternating current (AC) electrical generator that uses the principles of induction motors to produce electric power. Induction generators operate by mechanically turning their rotors faster than synchronous speed. A regular AC induction motor usually can be used as a generator, without any internal modifications. Because they can recover energy with relatively simple controls, induction generators are useful in applications such as mini hydro power plants, wind turbines, or in reducing high-pressure gas streams to lower pressure.

A brushed DC electric motor is an internally commutated electric motor designed to be run from a direct current power source and utilizing an electric brush for contact.

<span class="mw-page-title-main">Wound rotor motor</span>

A wound-rotor motor, also known as slip ring-rotor motor, is a type of induction motor where the rotor windings are connected through slip rings to external resistance. Adjusting the resistance allows control of the speed/torque characteristic of the motor. Wound-rotor motors can be started with low inrush current, by inserting high resistance into the rotor circuit; as the motor accelerates, the resistance can be decreased.

<span class="mw-page-title-main">Korndörfer autotransformer starter</span>

In electrical engineering, the Korndorfer starter is a technique used for reduced voltage soft starting of induction motors. The circuit uses a three-phase autotransformer and three three-phase switches. This motor starting method has been updated and improved by Hilton Raymond Bacon.

References

  1. 1 2 3 Siskind, Charles S. (1963). Electrical Control Systems in Industry. New York: McGraw-Hill, Inc. p.  150. ISBN   978-0-07-057746-6.
  2. "Soft starters". machinedesign.com. 2014-07-16.
  3. "Reliance Electric GV3000 Drive 50V4160 | Automation Industrial". 50v4160.com. Retrieved 2024-01-02.
  4. Bartos, Frank J. (2004-09-01). "AC Drives Stay Vital for the 21st Century". Control Engineering. Archived from the original on September 17, 2008. Retrieved 2008-03-28.
  5. Eisenbrown, Robert E. (2008-05-18). "AC Drives, Historical and Future Perspective of Innovation and Growth". Keynote Presentation for the 25th Anniversary of The Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC). University of Wisconsin, Madison, WI, USA: WEMPEC. pp. 6–10. Archived from the original on 2007-08-18. Retrieved 2008-03-28.
  6. Jahns, Thomas M.; Owen, Edward L. (January 2001). "AC Adjustable-Speed Drives at the Millennium: How Did We Get Here?". IEEE Transactions on Power Electronics. 16 (1): 17–25. Bibcode:2001ITPE...16...17J. doi:10.1109/63.903985.