Piezoelectric motor

Last updated
Insides of a slip-stick piezoelectric motor. Two piezoelectric crystals are visible that provide the mechanical torque. Insides of a piezoelectric motor.JPG
Insides of a slip-stick piezoelectric motor. Two piezoelectric crystals are visible that provide the mechanical torque.

A piezoelectric motor or piezo motor is a type of electric motor based on the change in shape of a piezoelectric material when an electric field is applied, as a consequence of the converse piezoelectric effect. An electrical circuit makes acoustic or ultrasonic vibrations in the piezoelectric material, most often lead zirconate titanate and occasionally lithium niobate or other single-crystal materials, which can produce linear or rotary motion depending on their mechanism. [2] Examples of types of piezoelectric motors include inchworm motors, stepper and slip-stick motors as well as ultrasonic motors which can be further categorized into standing wave and travelling wave motors. Piezoelectric motors typically use a cyclic stepping motion, which allows the oscillation of the crystals to produce an arbitrarily large motion, as opposed to most other piezoelectric actuators where the range of motion is limited by the static strain that may be induced in the piezoelectric element.

Contents

The growth and forming of piezoelectric crystals is a well-developed industry, yielding very uniform and consistent distortion for a given applied potential difference. This, combined with the minute scale of the distortions, gives the piezoelectric motor the ability to make very fine steps. Manufacturers claim precision to the nanometer scale. High response rate and fast distortion of the crystals also let the steps happen at very high frequencies—upwards of 5 MHz. This provides a maximum linear speed of approximately 800 mm per second, or nearly 2.9 km/h.

A unique capability of piezoelectric motors is their ability to operate in strong magnetic fields. This extends their usefulness to applications that cannot use traditional electromagnetic motors—such as inside nuclear magnetic resonance antennas. The maximum operating temperature is limited by the Curie temperature of the used piezoelectric ceramic and can exceed +250 °C.

The main benefits of piezoelectric motors are the high positioning precision, stability of position while unpowered, and the ability to be fabricated at very small sizes or in unusual shapes such as thin rings. Common applications of piezoelectric motors include focusing systems in camera lenses as well as precision motion control in specialised applications such as microscopy.

Resonant motor types

Ultrasonic motor

Ultrasonic motors differ from other piezoelectric motors in several ways, though both typically use some form of piezoelectric material. The most obvious difference is the use of resonance to amplify the vibration of the stator in contact with the rotor in ultrasonic motors.

Two different ways are generally available to control the friction along the stator-rotor contact interface, traveling-wave vibration and standing-wave vibration. [3] Some of the earliest versions of practical motors in the 1970s, by Sashida, for example, used standing-wave vibration in combination with fins placed at an angle to the contact surface to form a motor, albeit one that rotated in a single direction. Later designs by Sashida and researchers at Matsushita, ALPS, Xeryon and Canon made use of traveling-wave vibration to obtain bi-directional motion, and found that this arrangement offered better efficiency and less contact interface wear. An exceptionally high-torque 'hybrid transducer' ultrasonic motor uses circumferentially-poled and axially-poled piezoelectric elements together to combine axial and torsional vibration along the contact interface, representing a driving technique that lies somewhere between the standing and traveling-wave driving methods.

Non-resonant motor types

Inchworm motor

Fig. 1: Stepping stages of 'Normally Free' motor Piezosteps.png
Fig. 1: Stepping stages of 'Normally Free' motor

The inchworm motor uses piezoelectric ceramics to push a stator using a walking-type motion. These piezoelectric motors use three groups of crystals—two 'locking', and one 'motive' that permanently connects to either the motor's casing or stator (not both). The motive group, sandwiched between the other two, provides the motion.

The non-powered behaviour of this piezoelectric motor is one of two options: 'normally locked' or 'normally free'. A normally free type allows free movement when unpowered but can still be locked by applying a voltage.

Inchworm motors can achieve nanometre-scale positioning by varying the voltage applied to the motive crystal while one set of locking crystals is engaged.

Stepping actions

Piezoelectric "inchworm" motor Piezomotor type inchworm.gif
Piezoelectric "inchworm" motor

The actuation process of the inchworm motor is a multistep cyclical process: [2]

  1. First, one group of 'locking' crystals is activated to lock one side and unlock other side of the 'sandwich' of piezo crystals.
  2. Next, the 'motive' crystal group is triggered and held. The expansion of this group moves the unlocked 'locking' group along the motor path. This is the only stage where the motor moves.
  3. Then the 'locking' group triggered in stage one releases (in 'normally locking' motors, in the other it triggers).
  4. Then the 'motive' group releases, retracting the 'trailing locking' group.
  5. Finally, both 'locking' groups return to their default states.

Stepper or walk-drive motor

Bimorph cantilevers used in stepper or walk drive motor. Piezomotor type bimorph.gif
Bimorph cantilevers used in stepper or walk drive motor.

Not to be confused with the similarly named electromagnetic stepper motor, these motors are similar to the inchworm motor, however, the piezoelectric elements can be bimorph actuators which bend to feed the slider rather than using a separate expanding and contracting element. [4]

Slip-stick motor

A slip-stick actuator. Slip-stick actuator operation.svg
A slip-stick actuator.

The mechanism of slip-stick motors rely on the inertia in combination with the difference between static and dynamic friction. The stepping action consists of a slow extension phase where static friction is not overcome, followed by a rapid contraction phase where static friction is overcome and the point of contact between the motor and moving part is changed.

Direct drive motors

The direct drive piezoelectric motor creates movement through continuous ultrasonic vibration. Its control circuit applies a two-channel sinusoidal or square wave to the piezoelectric elements that matches the bending resonant frequency of the threaded tube—typically an ultrasonic frequency of 40 kHz to 200 kHz. This creates orbital motion that drives the screw.

A second drive type, the squiggle motor, uses piezoelectric elements bonded orthogonally to a nut. Their ultrasonic vibrations rotate a central lead screw.

Single action

Fig. 2: Piezo ratchet stepping motor. Piezoratchetsteppingmotor.svg
Fig. 2: Piezo ratchet stepping motor.

Very simple single-action stepping motors can be made with piezoelectric crystals. For example, with a hard and rigid rotor-spindle coated with a thin layer of a softer material (like a polyurethane rubber), a series of angled piezoelectric transducers can be arranged. (see Fig. 2). When the control circuit triggers one group of transducers, they push the rotor one step. This design cannot make steps as small or precise as more complex designs, but can reach higher speeds and is cheaper to manufacture.

Patents

The first U.S. patent to disclose a vibrationally-driven motor may be "Method and Apparatus for Delivering Vibratory Energy" (U.S. Pat. No. 3,184,842, Maropis, 1965). The Maropis patent describes a "vibratory apparatus wherein longitudinal vibrations in a resonant coupling element are converted to torsional vibrations in a toroid type resonant terminal element." The first practical piezomotors were designed and produced by V. Lavrinenko in Piezoelectronic Laboratory, starting 1964, Kyiv Polytechnic Institute, USSR. Other important patents in the early development of this technology include:

See also

Related Research Articles

<span class="mw-page-title-main">Piezoelectricity</span> Electric charge generated in certain solids due to mechanical stress

Piezoelectricity is the electric charge that accumulates in certain solid materials—such as crystals, certain ceramics, and biological matter such as bone, DNA, and various proteins—in response to applied mechanical stress. The word piezoelectricity means electricity resulting from pressure and latent heat. It is derived from Ancient Greek πιέζω (piézō) 'to squeeze or press' and ἤλεκτρον (ḗlektron) 'amber'. The German form of the word (Piezoelektricität) was coined in 1881 by the German physicist Wilhelm Gottlieb Hankel; the English word was coined in 1883.

<span class="mw-page-title-main">Stepper motor</span> Electric motor for discrete partial rotations

A stepper motor, also known as step motor or stepping motor, is a brushless DC electric motor that rotates in a series of small and discrete angular steps. Stepper motors can be set to any given step position without needing a position sensor for feedback. The step position can be rapidly increased or decreased to create continuous rotation, or the motor can be ordered to actively hold its position at one given step. Motors vary in size, speed, step resolution, and torque.

A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and control systems, where electrical signals are converted to and from other physical quantities. The process of converting one form of energy to another is known as transduction.

An actuator is a component of a machine that produces force, torque, or displacement, when an electrical, pneumatic or hydraulic input is supplied to it in a system. The effect is usually produced in a controlled way. An actuator translates such an input signal into the required form of mechanical energy. It is a type of transducer. In simple terms, it is a "mover".

Torsional vibration is the angular vibration of an object - commonly a shaft - along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings, where it can cause failures if not controlled. A second effect of torsional vibrations applies to passenger cars. Torsional vibrations can lead to seat vibrations or noise at certain speeds. Both reduce the comfort.

<span class="mw-page-title-main">Inchworm motor</span>

The inchworm motor is a device that uses piezoelectric actuators to move a shaft with nanometer precision.

<span class="mw-page-title-main">Linear actuator</span> Actuator that creates motion in a straight line

A linear actuator is an actuator that creates linear motion, in contrast to the circular motion of a conventional electric motor. Linear actuators are used in machine tools and industrial machinery, in computer peripherals such as disk drives and printers, in valves and dampers, and in many other places where linear motion is required. Hydraulic or pneumatic cylinders inherently produce linear motion. Many other mechanisms are used to generate linear motion from a rotating motor.

<span class="mw-page-title-main">Ultrasonic motor</span>

An ultrasonic motor is a type of piezoelectric motor powered by the ultrasonic vibration of a component, the stator, placed against another component, the rotor or slider depending on the scheme of operation. Ultrasonic motors differ from other piezoelectric motors in several ways, though both typically use some form of piezoelectric material, most often lead zirconate titanate and occasionally lithium niobate or other single-crystal materials. The most obvious difference is the use of resonance to amplify the vibration of the stator in contact with the rotor in ultrasonic motors. Ultrasonic motors also offer arbitrarily large rotation or sliding distances, while piezoelectric actuators are limited by the static strain that may be induced in the piezoelectric element.

<span class="mw-page-title-main">Piezoelectric sensor</span> Type of sensor

A piezoelectric sensor is a device that uses the piezoelectric effect to measure changes in pressure, acceleration, temperature, strain, or force by converting them to an electrical charge. The prefix piezo- is Greek for 'press' or 'squeeze'.

<span class="mw-page-title-main">Ultrasonic transducer</span> Acoustic sensor

Ultrasonic transducers and ultrasonic sensors are devices that generate or sense ultrasound energy. They can be divided into three broad categories: transmitters, receivers and transceivers. Transmitters convert electrical signals into ultrasound, receivers convert ultrasound into electrical signals, and transceivers can both transmit and receive ultrasound.

<span class="mw-page-title-main">Electromagnetic acoustic transducer</span>

An electromagnetic acoustic transducer (EMAT) is a transducer for non-contact acoustic wave generation and reception in conducting materials. Its effect is based on electromagnetic mechanisms, which do not need direct coupling with the surface of the material. Due to this couplant-free feature, EMATs are particularly useful in harsh, i.e., hot, cold, clean, or dry environments. EMATs are suitable to generate all kinds of waves in metallic and/or magnetostrictive materials. Depending on the design and orientation of coils and magnets, shear horizontal (SH) bulk wave mode, surface wave, plate waves such as SH and Lamb waves, and all sorts of other bulk and guided-wave modes can be excited. After decades of research and development, EMAT has found its applications in many industries such as primary metal manufacturing and processing, automotive, railroad, pipeline, boiler and pressure vessel industries, in which they are typically used for nondestructive testing (NDT) of metallic structures.

<span class="mw-page-title-main">Ultrasonic machining</span> Subtractive manufacturing process

Ultrasonic machining is a subtractive manufacturing process that removes material from the surface of a part through high frequency, low amplitude vibrations of a tool against the material surface in the presence of fine abrasive particles. The tool travels vertically or orthogonal to the surface of the part at amplitudes of 0.05 to 0.125 mm. The fine abrasive grains are mixed with water to form a slurry that is distributed across the part and the tip of the tool. Typical grain sizes of the abrasive material range from 100 to 1000, where smaller grains produce smoother surface finishes.

<span class="mw-page-title-main">Sonotrode</span>

In ultrasonic machining, welding and mixing, a sonotrode is a tool that creates ultrasonic vibrations and applies this vibrational energy to a gas, liquid, solid or tissue.

<span class="mw-page-title-main">Mechanical filter</span> Type of signal processing filter

A mechanical filter is a signal processing filter usually used in place of an electronic filter at radio frequencies. Its purpose is the same as that of a normal electronic filter: to pass a range of signal frequencies, but to block others. The filter acts on mechanical vibrations which are the analogue of the electrical signal. At the input and output of the filter, transducers convert the electrical signal into, and then back from, these mechanical vibrations.

A device generating linear or rotational motion using carbon nanotube(s) as the primary component, is termed a nanotube nanomotor. Nature already has some of the most efficient and powerful kinds of nanomotors. Some of these natural biological nanomotors have been re-engineered to serve desired purposes. However, such biological nanomotors are designed to work in specific environmental conditions. Laboratory-made nanotube nanomotors on the other hand are significantly more robust and can operate in diverse environments including varied frequency, temperature, mediums and chemical environments. The vast differences in the dominant forces and criteria between macroscale and micro/nanoscale offer new avenues to construct tailor-made nanomotors. The various beneficial properties of carbon nanotubes makes them the most attractive material to base such nanomotors on.

A MEMS magnetic actuator is a device that uses the microelectromechanical systems (MEMS) to convert an electric current into a mechanical output by employing the well-known Lorentz Force Equation or the theory of Magnetism.

Piezoelectric micromachined ultrasonic transducers (PMUT) are MEMS-based piezoelectric ultrasonic transducers. Unlike bulk piezoelectric transducers which use the thickness-mode motion of a plate of piezoelectric ceramic such as PZT or single-crystal PMN-PT, PMUT are based on the flexural motion of a thin membrane coupled with a thin piezoelectric film, such as PVDF.

This article provides information on the following six methods of producing electric power.

  1. Friction: Energy produced by rubbing two material together.
  2. Heat: Energy produced by heating the junction where two unlike metals are joined.
  3. Light: Energy produced by light being absorbed by photoelectric cells, or solar power.
  4. Chemical: Energy produced by chemical reaction in a voltaic cell, such as an electric battery.
  5. Pressure: Energy produced by compressing or decompressing specific crystals.
  6. Magnetism: Energy produced in a conductor that cuts or is cut by magnetic lines of force.
<span class="mw-page-title-main">Alper Erturk</span>

Alper Erturk is a mechanical engineer and the Woodruff Professor in the George W. Woodruff School of Mechanical Engineering at Georgia Institute of Technology.

<span class="mw-page-title-main">Kenji Uchino</span> American electronics engineer

Kenji Uchino is an American electronics engineer, physicist, academic, inventor and industry executive. He is currently an academy professor of Electrical Engineering, Emeritus Academy Institute at Pennsylvania State University, where he also directs the International Center for Actuators and Transducers at Materials Research Institute. He is the former associate director at The US Office of Naval Research – Global Tokyo Office.

References

  1. attocube rotator ANR101
  2. 1 2 Rupitsch, Stefan Johann (2019), "Piezoelectricity", Piezoelectric Sensors and Actuators, Topics in Mining, Metallurgy and Materials Engineering, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 43–81, doi:10.1007/978-3-662-57534-5_3, ISBN   978-3-662-57532-1 , retrieved 2021-05-05
  3. Zhao, Chunsheng (2011). Ultrasonic Motors. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-15305-1. ISBN   978-3-642-15304-4.
  4. Spanner, Karl; Koc, Burhanettin (2016-02-26). "Piezoelectric Motors, an Overview". Actuators. 5 (1): 6. doi: 10.3390/act5010006 . ISSN   2076-0825.