Traction motor

Last updated
A ZQDR-410 traction motor (the large, dark component on the axle) ZQDR-410 traction motor.jpg
A ZQDR-410 traction motor (the large, dark component on the axle)

A traction motor is an electric motor used for propulsion of a vehicle, such as locomotives, electric or hydrogen vehicles, or electric multiple unit trains.


Traction motors are used in electrically powered railway vehicles (electric multiple units) and other electric vehicles including electric milk floats, trolleybuses, elevators, roller coasters, and conveyors, as well as vehicles with electrical transmission systems (diesel-electric locomotives, electric hybrid vehicles), and battery electric vehicles.

Motor types and control

Direct-current motors with series field windings are the oldest type of traction motors. These provide a speed-torque characteristic useful for propulsion, providing high torque at lower speeds for the acceleration of the vehicle, and declining torque as speed increases. By arranging the field winding with multiple taps, the speed characteristic can be varied, allowing relatively smooth operator control of acceleration. A further measure of control is provided by using pairs of motors on a vehicle in series-parallel control; for slow operation or heavy loads, two motors can be run in a series of the direct-current supply. Where higher speed is desired, these motors can be operated in parallel, making a higher voltage available at each motor and so allowing higher speeds. Parts of a rail system might use different voltages, with higher voltages in long runs between stations and lower voltages near stations where only slower operation is needed.

A variant of the DC system is the AC series motor, also known as the universal motor, which is essentially the same device but operates on alternating current. Since both the armature and field current reverse at the same time, the behavior of the motor is similar to that when energized with direct current. To achieve better operating conditions, AC railways are often supplied with current at a lower frequency than the commercial supply used for general lighting and power; special traction current power stations are used, or rotary converters used to convert 50 or 60 Hz commercial power to the 25 Hz or 16+23 Hz frequency used for AC traction motors. Because it permits the simple use of transformers, the AC system allows efficient distribution of power down the length of a rail line, and also permits speed control with switchgear on the vehicle.

AC induction motors and synchronous motors are simple and low maintenance, but up until the advent of power semiconductors, were awkward to apply for traction motors because of their fixed speed characteristic. An AC induction motor generates useful amounts of power only over a narrow speed range determined by its construction and the frequency of the AC power supply. The advent of power semiconductors has made it possible to fit a variable frequency drive on a locomotive; this allows a wide range of speeds, AC power transmission, and the use of rugged induction motors that do not have wearing parts like brushes and commutators. [1]

Transportation applications

Road vehicles

Traditionally road vehicles (cars, buses, and trucks) have used diesel and petrol engines with a mechanical or hydraulic transmission system. In the latter part of the 20th century, vehicles with electrical transmission systems (powered by internal combustion engines, batteries, or fuel cells) began to be developed—one advantage of using electric machines is that specific types can regenerate energy (i.e. act as a regenerative brake)—providing deceleration as well as increasing overall efficiency by charging the battery pack.


Swiss Rhaetian Railway Ge 6/6 I Krokodil locomotive, with a single large traction motor above each bogie, with drive by coupling rods. Ge 6-6 I 407 Krokodil.jpeg
Swiss Rhaetian Railway Ge 6/6 I Krokodil locomotive, with a single large traction motor above each bogie, with drive by coupling rods.

Traditionally, these were series-wound brushed DC motors, usually running on approximately 600 volts. The availability of high-powered semiconductors (thyristors and the IGBT) has now made practical the use of much simpler, higher-reliability AC induction motors known as asynchronous traction motors. Synchronous AC motors are also occasionally used, as in the French TGV.

Mounting of motors

Before the mid-20th century, a single large motor was often used to drive multiple driving wheels through connecting rods that were very similar to those used on steam locomotives. Examples are the Pennsylvania Railroad DD1, FF1 and L5 and the various Swiss Crocodiles. It is now standard practice to provide one traction motor driving each axle through a gear drive.

Nose-suspended DC traction motor for a Czech CD class 182 locomotive Class 181 traction motor2.jpg
Nose-suspended DC traction motor for a Czech ČD class 182 locomotive

Usually, the traction motor is three-point suspended between the bogie frame and the driven axle; this is referred to as a "nose-suspended traction motor". The problem with such an arrangement is that a portion of the motor's weight is unsprung, increasing unwanted forces on the track. In the case of the famous Pennsylvania Railroad GG1, two frame-mounted motors drove each axle through a quill drive. The "Bi-Polar" electric locomotives built by General Electric for the Milwaukee Road had direct drive motors. The rotating shaft of the motor was also the axle for the wheels. In the case of French TGV power cars, a motor mounted to the power car's frame drives each axle; a "tripod" drive allows a small amount of flexibility in the drive train allowing the trucks bogies to pivot. By mounting the relatively heavy traction motor directly to the power car's frame, rather than to the bogie, better dynamics are obtained, allowing better high-speed operation. [2]


The DC motor was the mainstay of electric traction drives on electric and diesel-electric locomotives, street-cars/trams and diesel electric drilling rigs for many years. It consists of two parts, a rotating armature and fixed field windings surrounding the rotating armature mounted around a shaft. The fixed field windings consist of tightly wound coils of wire fitted inside the motor case. The armature is another set of coils wound round a central shaft and is connected to the field windings through "brushes" which are spring-loaded contacts pressing against an extension of the armature called the commutator. The commutator collects all the terminations of the armature coils and distributes them in a circular pattern to allow the correct sequence of current flow. When the armature and the field windings are connected in series, the whole motor is referred to as "series-wound". A series-wound DC motor has a low resistance field and armature circuit. For this reason, when voltage is applied to it, the current is high due to Ohm's law. The advantage of high current is that the magnetic fields inside the motor are strong, producing high torque (turning force), so it is ideal for starting a train. The disadvantage is that the current flowing into the motor has to be limited, otherwise the supply could be overloaded or the motor and its cabling could be damaged. At best, the torque would exceed the adhesion and the driving wheels would slip. Traditionally, resistors were used to limit the initial current.

Power control

As the DC motor starts to turn, interaction of the magnetic fields inside causes it to generate a voltage internally. This counter-electromotive force (CEMF) opposes the applied voltage and the current that flows is governed by the difference between the two. As the motor speeds up, the internally generated voltage rises, the resultant EMF falls, less current passes through the motor and the torque drops. The motor naturally stops accelerating when the drag of the train matches the torque produced by the motors. To continue accelerating the train, series resistors are switched out step by step, each step increasing the effective voltage and thus the current and torque for a little bit longer until the motor catches up. This can be heard and felt in older DC trains as a series of clunks under the floor, each accompanied by a jerk of acceleration as the torque suddenly increases in response to the new surge of current. When no resistors are left in the circuit, full line voltage is being applied directly to the motor. The train's speed remains constant at the point where the torque of the motor, governed by the effective voltage, equals the drag - sometimes referred to as balancing speed. If the train starts to climb an incline, the speed decreases because drag is greater than torque and the reduction in speed causes the CEMF to fall and thus the effective voltage to rise - until the current through the motor produces enough torque to match the new drag. The use of series resistance was wasteful because a lot of energy was lost as heat. To reduce these losses, electric locomotives and trains (before the advent of power electronics) were normally equipped for series-parallel control as well.

Locomotives that operated from AC power sources (using universal motors as traction motors) could also take advantage of tap changers on their transformers to vary the voltage applied to the traction motors without the losses inherent in resistors. The Pennsylvania Railroad class GG1 was an example of such a locomotive.

Dynamic braking

If the train starts to descend a grade, the speed increases because the (reduced) drag is less than the torque. With increased speed, the internally generated back-EMF voltage rises, reducing the torque until the torque again balances the drag. Because the field current is reduced by the back-EMF in a series wound motor, there is no speed at which the back-EMF will exceed the supply voltage, and therefore a single series wound DC traction motor alone cannot provide dynamic or regenerative braking.

There are, however various schemes applied to provide a retarding force using the traction motors. The energy generated may be returned to the supply (regenerative braking), or dissipated by on board resistors (dynamic braking). Such a system can bring the load to a low speed, requiring relatively little friction braking to bring the load to a full stop.

Automatic acceleration

On an electric train, the train driver or motorman originally had to control the cutting out of resistance manually, but by 1914, automatic acceleration was being used. This was achieved by an accelerating relay (often called a "notching relay") in the motor circuit which monitored the fall of current as each step of resistance was cut out. All the driver had to do was select low, medium or full speed (called "series", "parallel" and "shunt" from the way the motors were connected in the resistance circuit) and the automatic equipment would do the rest.


Electric locomotives usually have a continuous and one-hour rating. The one-hour rating is the maximum power that the motors can continuously develop over one hour without overheating. Such a test starts with the motors at +25 °C (and the outside air used for ventilation also at +25 °C). In the USSR, per GOST 2582-72 with class N insulation, the maximum temperatures allowed for DC motors were 160 °C for the armature, 180 °C for the stator, and 105 °C for the collector. [3] The one-hour rating is typically about 10% higher than the continuous rating and is limited by the temperature rise in the motor.

As traction motors use a reduction gear setup to transfer torque from the motor armature to the driven axle, the actual load placed on the motor varies with the gear ratio. Otherwise "identical" traction motors can have significantly different load rating. A traction motor geared for freight use with a low gear ratio will safely produce higher torque at the wheels for a longer period at the same current level because the lower gears give the motor more mechanical advantage.

In diesel-electric and gas turbine-electric locomotives, the horsepower rating of the traction motors is usually around 81% that of the prime mover. This assumes that the electrical generator converts 90% of the engine's output into electrical energy and the traction motors convert 90% of this electrical energy back into mechanical energy.[ citation needed ] Calculation: 0.9 × 0.9 = 0.81

Individual traction motor ratings usually range up 1,600 kW (2,100 hp).

Another important factor when traction motors are designed or specified is operational speed. The motor armature has a maximum safe rotating speed at or below which the windings will stay safely in place.

Above this maximum speed centrifugal force on the armature will cause the windings to be thrown outward. In severe cases, this can lead to "birdnesting" as the windings contact the motor housing and eventually break loose from the armature entirely and uncoil.

Bird-nesting (the centrifugal ejection of the armature's windings) due to overspeed can occur either in operating traction motors of powered locomotives or in traction motors of dead-in-consist locomotives being transported within a train traveling too fast. Another cause is replacement of worn or damaged traction motors with units incorrectly geared for the application.

Damage from overloading and overheating can also cause bird-nesting below rated speeds when the armature assembly and winding supports and retainers have been damaged by the previous abuse.


Because of the high power levels involved, traction motors are almost always cooled using forced air, water or a special dielectric liquid.

Typical cooling systems on U.S. diesel-electric locomotives consist of an electrically powered fan blowing air into a passage integrated into the locomotive frame. Rubber cooling ducts connect the passage to the individual traction motors and cooling air travels down and across the armatures before being exhausted to the atmosphere.


See also

Related Research Articles

<span class="mw-page-title-main">Locomotive</span> Self-propelled railway vehicle

A locomotive or engine is a rail transport vehicle that provides the motive power for a train. If a locomotive is capable of carrying a payload, it is usually rather referred to as a multiple unit, motor coach, railcar or power car; the use of these self-propelled vehicles is increasingly common for passenger trains, but rare for freight.

<span class="mw-page-title-main">Electric motor</span> Machine that converts electrical energy into mechanical energy

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and electric current in a wire winding to generate force in the form of torque applied on the motor's shaft. An electric generator is mechanically identical to an electric motor, but operates with a reversed flow of power, converting mechanical energy into electrical energy.

<span class="mw-page-title-main">Alternator</span> Device converting mechanical into electrical energy

An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature. Occasionally, a linear alternator or a rotating armature with a stationary magnetic field is used. In principle, any AC electrical generator can be called an alternator, but usually the term refers to small rotating machines driven by automotive and other internal combustion engines.

<span class="mw-page-title-main">Diesel locomotive</span> Locomotive powered by a diesel engine

A diesel locomotive is a type of railway locomotive in which the power source is a diesel engine. Several types of diesel locomotives have been developed, differing mainly in the means by which mechanical power is conveyed to the driving wheels. The most common are diesel-electric locomotives and diesel-hydraulic.

<span class="mw-page-title-main">Electric locomotive</span> Locomotive powered by electricity

An electric locomotive is a locomotive powered by electricity from overhead lines, a third rail or on-board energy storage such as a battery or a supercapacitor. Locomotives with on-board fuelled prime movers, such as diesel engines or gas turbines, are classed as diesel-electric or gas turbine-electric and not as electric locomotives, because the electric generator/motor combination serves only as a power transmission system.

<span class="mw-page-title-main">Dynamic braking</span> Dynamic braking is the use of the traction motors as generators when slowing a vehicle.

Dynamic braking is the use of an electric traction motor as a generator when slowing a vehicle such as an electric or diesel-electric locomotive. It is termed "rheostatic" if the generated electrical power is dissipated as heat in brake grid resistors, and "regenerative" if the power is returned to the supply line. Dynamic braking reduces wear on friction-based braking components, and regeneration lowers net energy consumption. Dynamic braking may also be used on railcars with multiple units, light rail vehicles, electric trams, trolleybuses, and electric and hybrid electric automobiles.

<span class="mw-page-title-main">Brushless DC electric motor</span> Synchronous electric motor powered by an inverter

A brushless DC electric motor (BLDC), also known as an electronically commutated motor, is a synchronous motor using a direct current (DC) electric power supply. It uses an electronic controller to switch DC currents to the motor windings producing magnetic fields that effectively rotate in space and which the permanent magnet rotor follows. The controller adjusts the phase and amplitude of the DC current pulses to control the speed and torque of the motor. This control system is an alternative to the mechanical commutator (brushes) used in many conventional electric motors.

<span class="mw-page-title-main">DC motor</span> Motor which works on direct current

A DC motor is an electrical motor that uses direct current (DC) to produce mechanical force. The most common types rely on magnetic forces produced by currents in the coils. Nearly all types of DC motors have some internal mechanism, either electromechanical or electronic, to periodically change the direction of current in part of the motor.

<span class="mw-page-title-main">Rotary converter</span>

A rotary converter is a type of electrical machine which acts as a mechanical rectifier, inverter or frequency converter.

<span class="mw-page-title-main">Armature (electrical)</span> Power-producing component of an electric machine

In electrical engineering, the armature is the winding of an electric machine which carries alternating current. The armature windings conduct AC even on DC machines, due to the commutator action or due to electronic commutation, as in brushless DC motors. The armature can be on either the rotor or the stator, depending on the type of electric machine.

<span class="mw-page-title-main">Universal motor</span> Type of electric motor

The universal motor is a type of electric motor that can operate on either AC or DC power and uses an electromagnet as its stator to create its magnetic field. It is a commutated series-wound motor where the stator's field coils are connected in series with the rotor windings through a commutator. It is often referred to as an AC series motor. The universal motor is very similar to a DC series motor in construction, but is modified slightly to allow the motor to operate properly on AC power. This type of electric motor can operate well on AC because the current in both the field coils and the armature will alternate synchronously with the supply. Hence the resulting mechanical force will occur in a consistent direction of rotation, independent of the direction of applied voltage, but determined by the commutator and polarity of the field coils.

<span class="mw-page-title-main">Motor drive</span>

Motor drive means a system that includes a motor. An adjustable speed motor drive means a system that includes a motor that has multiple operating speeds. A variable speed motor drive is a system that includes a motor and is continuously variable in speed. If the motor is generating electrical energy rather than using it – this could be called a generator drive but is often still referred to as a motor drive.

<span class="mw-page-title-main">Retarder (mechanical engineering)</span> Device for slowing down large vehicles

A retarder is a device used to augment or replace some of the functions of primary friction-based braking systems, usually on heavy vehicles. Retarders serve to slow vehicles, or maintain a steady speed while traveling down a hill, and help prevent the vehicle from "running away" by accelerating down the hill. They are not usually capable of bringing vehicles to a standstill, as their effectiveness diminishes as vehicle speed lowers. They are usually used as an additional "assistance" to slow vehicles, with the final braking done by a conventional friction braking system. As the friction brake will be used less, particularly at higher speeds, their service life is increased, and since in those vehicles the brakes are air-actuated helps to conserve air pressure too.

<span class="mw-page-title-main">Repulsion motor</span> Type of AC electric motor

A repulsion motor is a type of electric motor which runs on alternating current (AC). It was formerly used as a traction motor for electric trains but has been superseded by other types of motors. Repulsion motors are classified as single phase motors.

<span class="mw-page-title-main">AC motor</span> Electric motor driven by an AC electrical input

An AC motor is an electric motor driven by an alternating current (AC). The AC motor commonly consists of two basic parts, an outside stator having coils supplied with alternating current to produce a rotating magnetic field, and an inside rotor attached to the output shaft producing a second rotating magnetic field. The rotor magnetic field may be produced by permanent magnets, reluctance saliency, or DC or AC electrical windings.

A brushed DC electric motor is an internally commutated electric motor designed to be run from a direct current power source and utilizing an electric brush for contact.

Ward Leonard control, also known as the Ward Leonard drive system, was a widely used DC motor speed control system introduced by Harry Ward Leonard in 1891. In the early 1900s, the control system of Ward Leonard was adopted by the U.S. Navy and also used in passenger lifts of large mines. It also provided a solution to a moving sidewalk at the Paris Exposition of 1900, where many others had failed to operate properly. It was applied to railway locomotives used in World War I, and was used in anti-aircraft radars in World War II. Connected to automatic anti-aircraft gun directors, the tracking motion in two dimensions had to be extremely smooth and precise. The MIT Radiation Laboratory selected Ward-Leonard to equip the famous radar SCR-584 in 1942. The Ward Leonard control system was widely used for elevators until thyristor drives became available in the 1980s, because it offered smooth speed control and consistent torque. Many Ward Leonard control systems and variations on them remain in use.

In electrical engineering, electric machine is a general term for machines using electromagnetic forces, such as electric motors, electric generators, and others. They are electromechanical energy converters: an electric motor converts electricity to mechanical power while an electric generator converts mechanical power to electricity. The moving parts in a machine can be rotating or linear. Besides motors and generators, a third category often included is transformers, which although they do not have any moving parts are also energy converters, changing the voltage level of an alternating current.

<span class="mw-page-title-main">Bipolar electric motor</span> Electric motor with only two poles to its stationary field

A bipolar electric motor is an electric motor with only two poles to its stationary field. They are an example of the simple brushed DC motor, with a commutator. This field may be generated by either a permanent magnet or a field coil.

<span class="mw-page-title-main">Internal combustion locomotive</span> Railway locomotive that produces its pulling power through an internal combustion engine

An internal combustion locomotive is a type of railway locomotive that produces its pulling power using an internal combustion engine. These locomotives are fuelled by burning fossil fuels, most commonly oil or gasoline, to produce rotational power which is transmitted to the locomotive's driving wheels by various direct or indirect transmission mechanisms. The fuel is carried on the locomotive.


  1. Andreas Steimel Electric Traction - Motive Power and Energy Supply: Basics and Practical Experience Oldenbourg Industrieverlag, 2008 ISBN   3835631322  ; Chapter 6 "Induction Traction Motors and Their Control"
  2. "TGVweb - "Under the Hood" of a TGV". Retrieved 2017-12-12.
  3. Сидоров 1980, p.47