Leading and lagging current are phenomena that occur as a result of alternating current. In a circuit with alternating current, the value of voltage and current vary sinusoidally. In this type of circuit, the terms lead, lag, and in phase are used to describe current with reference to voltage. Current is in phase with voltage when there is no phase shift between the sinusoids describing their time varying behavior. This generally occurs when the load drawing the current is resistive.
In electric power flow, it is important to know how much current is leading or lagging because it creates the reactive power in the system, as opposed to the active (real) power. It can also play an important role in the operation of three phase electric power systems.
Angle notation can easily describe leading and lagging current:
In this equation, the value of theta is the important factor for leading and lagging current. As mentioned in the introduction above, leading or lagging current represents a time shift between the current and voltage sine curves, which is represented by the angle by which the curve is ahead or behind of where it would be initially. For example, if θ is zero, the curve will have amplitude zero at time zero. [2] Using complex numbers is a way to simplify analyzing certain components in RLC circuits. For example, it is very easy to convert these between polar and rectangular coordinates. Starting from the polar notation, can represent either the vector or the rectangular notation both of which have magnitudes of 1.
Lagging current can be formally defined with respect to “an alternating current that reaches its maximum value up to 90 degrees later than the voltage that produces it.” This means that current lags the voltage when , the angle of the current sine wave with respect to an arbitrarily chosen reference, is less than , the angle of the voltage sine wave with respect to the same reference. Therefore, current can quickly be identified as lagging if the angle is positive. For example, if the voltage angle is zero, current will be lagging if is negative. This is often the case because voltage is taken as the reference.
In circuits with primarily inductive loads, current lags the voltage. This happens because in an inductive load, it is the induced electromotive force that causes the current to flow. Note that in the definition above, the current is produced by the voltage. The induced electromotive force is caused by a change in the magnetic flux linking the coils of an inductor.
Leading current can be formally defined as “an alternating current that reaches its maximum value up to 90 degrees ahead of the voltage that it produces.” This means that the current leads the voltage when , the angle of the current sine wave with respect to an arbitrarily chosen reference is greater than , the angle of the voltage sine wave with respect to the same reference. Therefore, current can quickly be identified as leading if the angle is negative. For example, if the voltage angle is zero, current will be leading if is positive. This is often the case because voltage is taken as the reference.
In circuits with primarily capacitive loads, current leads the voltage. This is true because current must first flow to the two plates of the capacitor, where charge is stored. Only after charge accumulates at the plates of a capacitor is a voltage difference established. The behavior of the voltage is thus dependent on the behavior current and on how much charge accumulates. This is why the formal definition states that the current produces the voltage.In other words when A.C voltage start increasing charge start to accumulate across capacitor plates i.e current start to flow.This increasing charge develop potential difference across capacitor that reduces current. On the other hand when A.C voltage is decreasing higher voltage of charged capacitor causes current to flow in opposite direction and capacitor is discharged and vice versa.
A simple phasor diagram with a two dimensional Cartesian coordinate system and phasors can be used to visualize leading and lagging current at a fixed moment in time. In the real-complex coordinate system, one period of a sine wave corresponds to a full circle in the complex plane. Since the voltage and current have the same frequency, at any moment in time those quantities can be easily represented by stationary points on the circle, while the arrows from the center of circle to those points are called phasors. Since the relative time difference between functions is constant, they also have a constant angle difference between them, represented by the angle between points on the circle. [2]
An early source of data is an article from the 1911 American Academy of Arts and Sciences by Arthur E. Kennelly. Kennelly uses conventional methods in solving vector diagrams for oscillating circuits, which can also include alternating current circuits as well.
References:
Three-phase electric power is a common type of alternating current (AC) used in electricity generation, transmission, and distribution. It is a type of polyphase system employing three wires and is the most common method used by electrical grids worldwide to transfer power.
A phase-locked loop or phase lock loop (PLL) is a control system that generates an output signal whose phase is fixed relative to the phase of an input signal. Keeping the input and output phase in lockstep also implies keeping the input and output frequencies the same, thus a phase-locked loop can also track an input frequency. And by incorporating a frequency divider, a PLL can generate a stable frequency that is a multiple of the input frequency.
In electrical engineering, the power factor of an AC power system is defined as the ratio of the real power absorbed by the load to the apparent power flowing in the circuit. Real power is the average of the instantaneous product of voltage and current and represents the capacity of the electricity for performing work. Apparent power is the product of root mean square (RMS) current and voltage. Due to energy stored in the load and returned to the source, or due to a non-linear load that distorts the wave shape of the current drawn from the source, the apparent power may be greater than the real power, so more current flows in the circuit than would be required to transfer real power alone. A power factor magnitude of less than one indicates the voltage and current are not in phase, reducing the average product of the two. A negative power factor occurs when the device generates real power, which then flows back towards the source.
The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage, the current in a circuit, or a field vector such as electric field strength or flux density. The propagation constant itself measures the dimensionless change in magnitude or phase per unit length. In the context of two-port networks and their cascades, propagation constant measures the change undergone by the source quantity as it propagates from one port to the next.
In electrical engineering, impedance is the opposition to alternating current presented by the combined effect of resistance and reactance in a circuit.
In astronomy, coordinate systems are used for specifying positions of celestial objects relative to a given reference frame, based on physical reference points available to a situated observer. Coordinate systems in astronomy can specify an object's relative position in three-dimensional space or plot merely by its direction on a celestial sphere, if the object's distance is unknown or trivial.
In particle physics, bremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into radiation, thus satisfying the law of conservation of energy. The term is also used to refer to the process of producing the radiation. Bremsstrahlung has a continuous spectrum, which becomes more intense and whose peak intensity shifts toward higher frequencies as the change of the energy of the decelerated particles increases.
In linear algebra, an invertible complex square matrix U is unitary if its matrix inverse U−1 equals its conjugate transpose U*, that is, if
In astronomy, superluminal motion is the apparently faster-than-light motion seen in some radio galaxies, BL Lac objects, quasars, blazars and recently also in some galactic sources called microquasars. Bursts of energy moving out along the relativistic jets emitted from these objects can have a proper motion that appears greater than the speed of light. All of these sources are thought to contain a black hole, responsible for the ejection of mass at high velocities. Light echoes can also produce apparent superluminal motion.
A nonholonomic system in physics and mathematics is a physical system whose state depends on the path taken in order to achieve it. Such a system is described by a set of parameters subject to differential constraints and non-linear constraints, such that when the system evolves along a path in its parameter space but finally returns to the original set of parameter values at the start of the path, the system itself may not have returned to its original state. Nonholonomic mechanics is autonomous division of Newtonian mechanics.
In power engineering, the power-flow study, or load-flow study, is a numerical analysis of the flow of electric power in an interconnected system. A power-flow study usually uses simplified notations such as a one-line diagram and per-unit system, and focuses on various aspects of AC power parameters, such as voltages, voltage angles, real power and reactive power. It analyzes the power systems in normal steady-state operation.
The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.
In the Standard Model of particle physics, the Cabibbo–Kobayashi–Maskawa matrix, CKM matrix, quark mixing matrix, or KM matrix is a unitary matrix which contains information on the strength of the flavour-changing weak interaction. Technically, it specifies the mismatch of quantum states of quarks when they propagate freely and when they take part in the weak interactions. It is important in the understanding of CP violation. This matrix was introduced for three generations of quarks by Makoto Kobayashi and Toshihide Maskawa, adding one generation to the matrix previously introduced by Nicola Cabibbo. This matrix is also an extension of the GIM mechanism, which only includes two of the three current families of quarks.
In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period. A three-phase system may be arranged in delta (∆) or star (Y). A wye system allows the use of two different voltages from all three phases, such as a 230/400 V system which provides 230 V between the neutral and any one of the phases, and 400 V across any two phases. A delta system arrangement provides only one voltage, but it has a greater redundancy as it may continue to operate normally with one of the three supply windings offline, albeit at 57.7% of total capacity. Harmonic current in the neutral may become very large if nonlinear loads are connected.
In physics and engineering, a phasor is a complex number representing a sinusoidal function whose amplitude, and initial phase are time-invariant and whose angular frequency is fixed. It is related to a more general concept called analytic representation, which decomposes a sinusoid into the product of a complex constant and a factor depending on time and frequency. The complex constant, which depends on amplitude and phase, is known as a phasor, or complex amplitude, and sinor or even complexor.
In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the direction of energy flow. Its SI unit is the watt.
Rifleman's rule is a "rule of thumb" that allows a rifleman to accurately fire a rifle that has been calibrated for horizontal targets at uphill or downhill targets. The rule says that only the horizontal range should be considered when adjusting a sight or performing hold-over in order to account for bullet drop. Typically, the range of an elevated target is considered in terms of the slant range, incorporating both the horizontal distance and the elevation distance, as when a rangefinder is used to determine the distance to target. The slant range is not compatible with standard ballistics tables for estimating bullet drop.
The differentiation of trigonometric functions is the mathematical process of finding the derivative of a trigonometric function, or its rate of change with respect to a variable. For example, the derivative of the sine function is written sin′(a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle.
In electrical engineering, the alpha-betatransformation is a mathematical transformation employed to simplify the analysis of three-phase circuits. Conceptually it is similar to the dq0 transformation. One very useful application of the transformation is the generation of the reference signal used for space vector modulation control of three-phase inverters.
In trigonometry, Mollweide's formula is a pair of relationships between sides and angles in a triangle.