Self-focusing

Last updated
Light passing through a gradient-index lens is focused as in a convex lens. In self-focusing, the refractive index gradient is induced by the light itself. Grin-lens.png
Light passing through a gradient-index lens is focused as in a convex lens. In self-focusing, the refractive index gradient is induced by the light itself.

Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. [1] [2] A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterized by an initial transverse intensity gradient, as in a laser beam. [3] The peak intensity of the self-focused region keeps increasing as the wave travels through the medium, until defocusing effects or medium damage interrupt this process. Self-focusing of light was discovered by Gurgen Askaryan.

Contents

Self-focusing is often observed when radiation generated by femtosecond lasers propagates through many solids, liquids and gases. Depending on the type of material and on the intensity of the radiation, several mechanisms produce variations in the refractive index which result in self-focusing: the main cases are Kerr-induced self-focusing and plasma self-focusing.

Kerr-induced self-focusing

Kerr-induced self-focusing was first predicted in the 1960s [4] [5] [6] and experimentally verified by studying the interaction of ruby lasers with glasses and liquids. [7] [8] Its origin lies in the optical Kerr effect, a non-linear process which arises in media exposed to intense electromagnetic radiation, and which produces a variation of the refractive index as described by the formula , where n0 and n2 are the linear and non-linear components of the refractive index, and I is the intensity of the radiation. Since n2 is positive in most materials, the refractive index becomes larger in the areas where the intensity is higher, usually at the centre of a beam, creating a focusing density profile which potentially leads to the collapse of a beam on itself. [9] [10] Self-focusing beams have been found to naturally evolve into a Townes profile [5] regardless of their initial shape. [11]

Self-focusing beyond a threshold of power can lead to laser collapse and damage to the medium, which occurs if the radiation power is greater than the critical power [12]

,

where λ is the radiation wavelength in vacuum and α is a constant which depends on the initial spatial distribution of the beam. Although there is no general analytical expression for α, its value has been derived numerically for many beam profiles. [12] The lower limit is α ≈ 1.86225, which corresponds to Townes beams, whereas for a Gaussian beam α ≈ 1.8962.

For air, n0 ≈ 1, n2 ≈ 4×10−23 m2/W for λ = 800 nm, [13] and the critical power is Pcr ≈ 2.4 GW, corresponding to an energy of about 0.3 mJ for a pulse duration of 100 fs. For silica, n0 ≈ 1.453, n2 ≈ 2.4×10−20 m2/W, [14] and the critical power is Pcr ≈ 2.8 MW.

Kerr-induced self-focusing is crucial for many applications in laser physics, both as a key ingredient and as a limiting factor. For example, the technique of chirped pulse amplification was developed to overcome the nonlinearities and damage of optical components that self-focusing would produce in the amplification of femtosecond laser pulses. On the other hand, self-focusing is a major mechanism behind Kerr-lens modelocking, laser filamentation in transparent media, [15] [16] self-compression of ultrashort laser pulses, [17] parametric generation, [18] and many areas of laser-matter interaction in general.

Self-focusing and defocusing in gain medium

Kelley [6] predicted that homogeneously broadened two-level atoms may focus or defocus light when carrier frequency is detuned downward or upward the center of gain line . Laser pulse propagation with slowly varying envelope is governed in gain medium by the nonlinear Schrödinger-Frantz-Nodvik equation. [19]

When is detuned downward or upward from the refractive index is changed. "Red" detuning leads to an increased index of refraction during saturation of the resonant transition, i.e. to self-focusing, while for "blue" detuning the radiation is defocused during saturation:

where is the stimulated emission cross section, is the population inversion density before pulse arrival, and are longitudinal and transverse lifetimes of two-level medium and is the propagation axis.

Filamentation

The laser beam with a smooth spatial profile is affected by modulational instability. The small perturbations caused by roughnesses and medium defects are amplified in propagation. This effect is referred to as Bespalov-Talanov instability. [20] In a framework of nonlinear Schrödinger equation : .

The rate of the perturbation growth or instability increment is linked with filament size via simple equation: . Generalization of this link between Bespalov-Talanov increments and filament size in gain medium as a function of linear gain and detuning had been realized in . [19]

Plasma self-focusing

Advances in laser technology have recently enabled the observation of self-focusing in the interaction of intense laser pulses with plasmas. [21] [22] Self-focusing in plasma can occur through thermal, relativistic and ponderomotive effects. [23] Thermal self-focusing is due to collisional heating of a plasma exposed to electromagnetic radiation: the rise in temperature induces a hydrodynamic expansion which leads to an increase of the index of refraction and further heating. [24]

Relativistic self-focusing is caused by the mass increase of electrons travelling at speed approaching the speed of light, which modifies the plasma refractive index nrel according to the equation

,

where ω is the radiation angular frequency and ωp the relativistically corrected plasma frequency . [25] [26]

Ponderomotive self-focusing is caused by the ponderomotive force, which pushes electrons away from the region where the laser beam is more intense, therefore increasing the refractive index and inducing a focusing effect. [27] [28] [29]

The evaluation of the contribution and interplay of these processes is a complex task, [30] but a reference threshold for plasma self-focusing is the relativistic critical power [2] [31]

,

where me is the electron mass, c the speed of light, ω the radiation angular frequency, e the electron charge and ωp the plasma frequency. For an electron density of 1019 cm−3 and radiation at the wavelength of 800 nm, the critical power is about 3 TW. Such values are realisable with modern lasers, which can exceed PW powers. For example, a laser delivering 50 fs pulses with an energy of 1 J has a peak power of 20 TW.

Self-focusing in a plasma can balance the natural diffraction and channel a laser beam. Such effect is beneficial for many applications, since it helps increasing the length of the interaction between laser and medium. This is crucial, for example, in laser-driven particle acceleration, [32] laser-fusion schemes [33] and high harmonic generation. [34]

Accumulated self-focusing

Self-focusing can be induced by a permanent refractive index change resulting from a multi-pulse exposure. This effect has been observed in glasses which increase the refractive index during an exposure to ultraviolet laser radiation. [35] Accumulated self-focusing develops as a wave guiding, rather than a lensing effect. The scale of actively forming beam filaments is a function of the exposure dose. Evolution of each beam filament towards a singularity is limited by the maximum induced refractive index change or by laser damage resistance of the glass.

Self-focusing in soft matter and polymer systems

Self-focusing can also been observed in a number of soft matter systems, such as solutions of polymers and particles as well as photo-polymers. [36] Self-focusing was observed in photo-polymer systems with microscale laser beams of either UV [37] or visible light. [38] The self-trapping of incoherent light was also later observed. [39] Self-focusing can also be observed in wide-area beams, wherein the beam undergoes filamentation, or Modulation Instability, spontaneous dividing into a multitude of microscale self-focused beams, or filaments. [40] [41] [39] [42] [43] The balance of self-focusing and natural beam divergence results in the beams propagating divergence-free. Self-focusing in photopolymerizable media is possible, owing to a photoreaction dependent refractive index, [37] and the fact that refractive index in polymers is proportional to molecular weight and crosslinking degree [44] which increases over the duration of photo-polymerization.

See also

Related Research Articles

<span class="mw-page-title-main">Group velocity</span> Physical quantity

The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes—known as the modulation or envelope of the wave—propagates through space.

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

<span class="mw-page-title-main">Ionization</span> Process by which atoms or molecules acquire charge by gaining or losing electrons

Ionization is the process by which an atom or a molecule acquires a negative or positive charge by gaining or losing electrons, often in conjunction with other chemical changes. The resulting electrically charged atom or molecule is called an ion. Ionization can result from the loss of an electron after collisions with subatomic particles, collisions with other atoms, molecules and ions, or through the interaction with electromagnetic radiation. Heterolytic bond cleavage and heterolytic substitution reactions can result in the formation of ion pairs. Ionization can occur through radioactive decay by the internal conversion process, in which an excited nucleus transfers its energy to one of the inner-shell electrons causing it to be ejected.

Matter waves are a central part of the theory of quantum mechanics, being half of wave–particle duality. All matter exhibits wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave.

<span class="mw-page-title-main">Optical tweezers</span> Scientific instruments

Optical tweezers are scientific instruments that use a highly focused laser beam to hold and move microscopic and sub-microscopic objects like atoms, nanoparticles and droplets, in a manner similar to tweezers. If the object is held in air or vacuum without additional support, it can be called optical levitation.

The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the square of the electric field instead of varying linearly with it. All materials show a Kerr effect, but certain liquids display it more strongly than others. The Kerr effect was discovered in 1875 by Scottish physicist John Kerr.

<span class="mw-page-title-main">Sagnac effect</span> Relativistic effect due to rotation

The Sagnac effect, also called Sagnac interference, named after French physicist Georges Sagnac, is a phenomenon encountered in interferometry that is elicited by rotation. The Sagnac effect manifests itself in a setup called a ring interferometer or Sagnac interferometer. A beam of light is split and the two beams are made to follow the same path but in opposite directions. On return to the point of entry the two light beams are allowed to exit the ring and undergo interference. The relative phases of the two exiting beams, and thus the position of the interference fringes, are shifted according to the angular velocity of the apparatus. In other words, when the interferometer is at rest with respect to a nonrotating frame, the light takes the same amount of time to traverse the ring in either direction. However, when the interferometer system is spun, one beam of light has a longer path to travel than the other in order to complete one circuit of the mechanical frame, and so takes longer, resulting in a phase difference between the two beams. Georges Sagnac set up this experiment in 1913 in an attempt to prove the existence of the aether that Einstein's theory of special relativity makes superfluous.

<span class="mw-page-title-main">Ion trap</span> Device for trapping charged particles

An ion trap is a combination of electric and/or magnetic fields used to capture charged particles — known as ions — often in a system isolated from an external environment. Atomic and molecular ion traps have a number of applications in physics and chemistry such as precision mass spectrometry, improved atomic frequency standards, and quantum computing. In comparison to neutral atom traps, ion traps have deeper trapping potentials that do not depend on the internal electronic structure of a trapped ion. This makes ion traps more suitable for the study of light interactions with single atomic systems. The two most popular types of ion traps are the Penning trap, which forms a potential via a combination of static electric and magnetic fields, and the Paul trap which forms a potential via a combination of static and oscillating electric fields.

<span class="mw-page-title-main">Ponderomotive force</span> Nonlinear force experienced by a charged particle

In physics, a ponderomotive force is a nonlinear force that a charged particle experiences in an inhomogeneous oscillating electromagnetic field. It causes the particle to move towards the area of the weaker field strength, rather than oscillating around an initial point as happens in a homogeneous field. This occurs because the particle sees a greater magnitude of force during the half of the oscillation period while it is in the area with the stronger field. The net force during its period in the weaker area in the second half of the oscillation does not offset the net force of the first half, and so over a complete cycle this makes the particle move towards the area of lesser force.

Phase-contrast imaging is a method of imaging that has a range of different applications. It measures differences in the refractive index of different materials to differentiate between structures under analysis. In conventional light microscopy, phase contrast can be employed to distinguish between structures of similar transparency, and to examine crystals on the basis of their double refraction. This has uses in biological, medical and geological science. In X-ray tomography, the same physical principles can be used to increase image contrast by highlighting small details of differing refractive index within structures that are otherwise uniform. In transmission electron microscopy (TEM), phase contrast enables very high resolution (HR) imaging, making it possible to distinguish features a few Angstrom apart.

In nonlinear optics, filament propagation is propagation of a beam of light through a medium without diffraction. This is possible because the Kerr effect causes an index of refraction change in the medium, resulting in self-focusing of the beam.

<span class="mw-page-title-main">Pinch (plasma physics)</span> Compression of an electrically conducting filament by magnetic forces

A pinch is the compression of an electrically conducting filament by magnetic forces, or a device that does such. The conductor is usually a plasma, but could also be a solid or liquid metal. Pinches were the first type of device used for experiments in controlled nuclear fusion power.

The Frank–Tamm formula yields the amount of Cherenkov radiation emitted on a given frequency as a charged particle moves through a medium at superluminal velocity. It is named for Russian physicists Ilya Frank and Igor Tamm who developed the theory of the Cherenkov effect in 1937, for which they were awarded a Nobel Prize in Physics in 1958.

<span class="mw-page-title-main">High harmonic generation</span> Laser science process

High-harmonic generation (HHG) is a non-linear process during which a target is illuminated by an intense laser pulse. Under such conditions, the sample will emit the high harmonics of the generation beam. Due to the coherent nature of the process, high-harmonics generation is a prerequisite of attosecond physics.

In relativistic laser-plasma physics the relativistic similarity parameterS is a dimensionless parameter defined as

The phase-space formulation of quantum mechanics places the position and momentum variables on equal footing in phase space. In contrast, the Schrödinger picture uses the position or momentum representations. The two key features of the phase-space formulation are that the quantum state is described by a quasiprobability distribution and operator multiplication is replaced by a star product.

The semiconductor luminescence equations (SLEs) describe luminescence of semiconductors resulting from spontaneous recombination of electronic excitations, producing a flux of spontaneously emitted light. This description established the first step toward semiconductor quantum optics because the SLEs simultaneously includes the quantized light–matter interaction and the Coulomb-interaction coupling among electronic excitations within a semiconductor. The SLEs are one of the most accurate methods to describe light emission in semiconductors and they are suited for a systematic modeling of semiconductor emission ranging from excitonic luminescence to lasers.

The numerical models of lasers and the most of nonlinear optical systems stem from Maxwell–Bloch equations (MBE). This full set of Partial Differential Equations includes Maxwell equations for electromagnetic field and semiclassical equations of the two-level atoms. For this reason the simplified theoretical approaches were developed for numerical simulation of laser beams formation and their propagation since the early years of laser era. The Slowly varying envelope approximation of MBE follows from the standard nonlinear wave equation with nonlinear polarization as a source:

<span class="mw-page-title-main">Non-linear inverse Compton scattering</span> Electron-many photon scattering

Non-linear inverse Compton scattering (NICS), also known as non-linear Compton scattering and multiphoton Compton scattering, is the scattering of multiple low-energy photons, given by an intense electromagnetic field, in a high-energy photon during the interaction with a charged particle, in many cases an electron. This process is an inverted variant of Compton scattering since, contrary to it, the charged particle transfers its energy to the outgoing high-energy photon instead of receiving energy from an incoming high-energy photon. Furthermore, differently from Compton scattering, this process is explicitly non-linear because the conditions for multiphoton absorption by the charged particle are reached in the presence of a very intense electromagnetic field, for example, the one produced by high-intensity lasers.

<span class="mw-page-title-main">Phonon polariton</span> Quasiparticle form phonon and photon coupling

In condensed matter physics, a phonon polariton is a type of quasiparticle that can form in a diatomic ionic crystal due to coupling of transverse optical phonons and photons. They are particular type of polariton, which behave like bosons. Phonon polaritons occur in the region where the wavelength and energy of phonons and photons are similar, as to adhere to the avoided crossing principle.

References

  1. Cumberbatch, E. (1970). "Self-focusing in Non-linear Optics". IMA Journal of Applied Mathematics. 6 (3): 250–62. doi:10.1093/imamat/6.3.250.
  2. 1 2 Mourou, Gerard A.; Tajima, Toshiki; Bulanov, Sergei V. (2006). "Optics in the relativistic regime". Reviews of Modern Physics. 78 (2): 309. Bibcode:2006RvMP...78..309M. doi:10.1103/RevModPhys.78.309.
  3. Rashidian Vaziri, M.R. (2015). "Comment on 'Nonlinear refraction measurements of materials using the moiré deflectometry'". Optics Communications. 357: 200–1. Bibcode:2015OptCo.357..200R. doi:10.1016/j.optcom.2014.09.017.
  4. Askar'yan, G. A. (1962). "Cerenkov Radiation and Transition Radiation from Electromagnetic Waves". Journal of Experimental and Theoretical Physics. 15 (5): 943–6.
  5. 1 2 Chiao, R. Y.; Garmire, E.; Townes, C. H. (1964). "Self-Trapping of Optical Beams". Physical Review Letters. 13 (15): 479. Bibcode:1964PhRvL..13..479C. doi:10.1103/PhysRevLett.13.479.
  6. 1 2 Kelley, P. L. (1965). "Self-Focusing of Optical Beams". Physical Review Letters. 15 (26): 1005–1008. Bibcode:1965PhRvL..15.1005K. doi:10.1103/PhysRevLett.15.1005.
  7. Lallemand, P.; Bloembergen, N. (1965). "Self-Focusing of Laser Beams and Stimulated Raman Gain in Liquids". Physical Review Letters. 15 (26): 1010. Bibcode:1965PhRvL..15.1010L. doi:10.1103/PhysRevLett.15.1010.
  8. Garmire, E.; Chiao, R. Y.; Townes, C. H. (1966). "Dynamics and Characteristics of the Self-Trapping of Intense Light Beams". Physical Review Letters. 16 (9): 347. Bibcode:1966PhRvL..16..347G. doi:10.1103/PhysRevLett.16.347. hdl: 2060/19660014476 .
  9. Gaeta, Alexander L. (2000). "Catastrophic Collapse of Ultrashort Pulses". Physical Review Letters. 84 (16): 3582–5. Bibcode:2000PhRvL..84.3582G. doi:10.1103/PhysRevLett.84.3582. PMID   11019151.
  10. Rashidian Vaziri, M R (2013). "Describing the propagation of intense laser pulses in nonlinear Kerr media using the ducting model". Laser Physics. 23 (10): 105401. Bibcode:2013LaPhy..23j5401R. doi:10.1088/1054-660X/23/10/105401. S2CID   250912159.
  11. Moll, K. D.; Gaeta, Alexander L.; Fibich, Gadi (2003). "Self-Similar Optical Wave Collapse: Observation of the Townes Profile". Physical Review Letters. 90 (20): 203902. Bibcode:2003PhRvL..90t3902M. doi:10.1103/PhysRevLett.90.203902. PMID   12785895.
  12. 1 2 Fibich, Gadi; Gaeta, Alexander L. (2000). "Critical power for self-focusing in bulk media and in hollow waveguides". Optics Letters. 25 (5): 335–7. Bibcode:2000OptL...25..335F. doi:10.1364/OL.25.000335. PMID   18059872.
  13. Nibbering, E. T. J.; Grillon, G.; Franco, M. A.; Prade, B. S.; Mysyrowicz, A. (1997). "Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses". Journal of the Optical Society of America B. 14 (3): 650–60. Bibcode:1997JOSAB..14..650N. doi:10.1364/JOSAB.14.000650.
  14. Garcia, Hernando; Johnson, Anthony M.; Oguama, Ferdinand A.; Trivedi, Sudhir (2003). "New approach to the measurement of the nonlinear refractive index of short (< 25 m) lengths of silica and erbium-doped fibers". Optics Letters. 28 (19): 1796–8. Bibcode:2003OptL...28.1796G. doi:10.1364/OL.28.001796. PMID   14514104.
  15. Kasparian, J.; Rodriguez, M.; Méjean, G.; Yu, J.; Salmon, E.; Wille, H.; Bourayou, R.; Frey, S.; André, Y.-B.; Mysyrowicz, A.; Sauerbrey, R.; Wolf, J.-P.; Wöste, L. (2003). "White-Light Filaments for Atmospheric Analysis". Science. 301 (5629): 61–4. Bibcode:2003Sci...301...61K. CiteSeerX   10.1.1.1028.4581 . doi:10.1126/science.1085020. PMID   12843384. S2CID   37270331.
  16. Couairon, A; Mysyrowicz, A (2007). "Femtosecond filamentation in transparent media". Physics Reports. 441 (2–4): 47–189. Bibcode:2007PhR...441...47C. doi:10.1016/j.physrep.2006.12.005.
  17. Stibenz, Gero; Zhavoronkov, Nickolai; Steinmeyer, Günter (2006). "Self-compression of millijoule pulses to 78 fs duration in a white-light filament". Optics Letters. 31 (2): 274–6. Bibcode:2006OptL...31..274S. doi:10.1364/OL.31.000274. PMID   16441054. S2CID   12957688.
  18. Cerullo, Giulio; De Silvestri, Sandro (2003). "Ultrafast optical parametric amplifiers". Review of Scientific Instruments. 74 (1): 1. Bibcode:2003RScI...74....1C. doi:10.1063/1.1523642.
  19. 1 2 Okulov, A Yu; Oraevskiĭ, A N (1988). "Compensation of self-focusing distortions in quasiresonant amplification of a light pulse". Soviet Journal of Quantum Electronics. 18 (2): 233–7. Bibcode:1988QuEle..18..233O. doi:10.1070/QE1988v018n02ABEH011482.
  20. Bespalov, VI; Talanov, VI (1966). "Filamentary Structure of Light Beams in Nonlinear Liquids". JETP Letters. 3 (12): 307–310.
  21. Borisov, A. B.; Borovskiy, A. V.; Korobkin, V. V.; Prokhorov, A. M.; Shiryaev, O. B.; Shi, X. M.; Luk, T. S.; McPherson, A.; Solem, J. C.; Boyer, K.; Rhodes, C. K. (1992). "Observation of relativistic and charge-displacement self-channeling of intense subpicosecond ultraviolet (248 nm) radiation in plasmas". Physical Review Letters. 68 (15): 2309–2312. Bibcode:1992PhRvL..68.2309B. doi:10.1103/PhysRevLett.68.2309. PMID   10045362.
  22. Monot, P.; Auguste, T.; Gibbon, P.; Jakober, F.; Mainfray, G.; Dulieu, A.; Louis-Jacquet, M.; Malka, G.; Miquel, J. L. (1995). "Experimental Demonstration of Relativistic Self-Channeling of a Multiterawatt Laser Pulse in an Underdense Plasma". Physical Review Letters. 74 (15): 2953–2956. Bibcode:1995PhRvL..74.2953M. doi:10.1103/PhysRevLett.74.2953. PMID   10058066.
  23. Mori, W. B.; Joshi, C.; Dawson, J. M.; Forslund, D. W.; Kindel, J. M. (1988). "Evolution of self-focusing of intense electromagnetic waves in plasma". Physical Review Letters. 60 (13): 1298–1301. Bibcode:1988PhRvL..60.1298M. doi:10.1103/PhysRevLett.60.1298. PMID   10037999.
  24. Perkins, F. W.; Valeo, E. J. (1974). "Thermal Self-Focusing of Electromagnetic Waves in Plasmas". Physical Review Letters. 32 (22): 1234. Bibcode:1974PhRvL..32.1234P. doi:10.1103/PhysRevLett.32.1234.
  25. Max, Claire Ellen; Arons, Jonathan; Langdon, A. Bruce (1974). "Self-Modulation and Self-Focusing of Electromagnetic Waves in Plasmas". Physical Review Letters. 33 (4): 209. Bibcode:1974PhRvL..33..209M. doi:10.1103/PhysRevLett.33.209.
  26. Pukhov, Alexander (2003). "Strong field interaction of laser radiation". Reports on Progress in Physics. 66 (1): 47–101. Bibcode:2003RPPh...66...47P. doi:10.1088/0034-4885/66/1/202. S2CID   250909633.
  27. Kaw, P.; Schmidt, G.; Wilcox, T. (1973). "Filamentation and trapping of electromagnetic radiation in plasmas". Physics of Fluids. 16 (9): 1522. Bibcode:1973PhFl...16.1522K. doi:10.1063/1.1694552.
  28. Pizzo, V Del; Luther-Davies, B (1979). "Evidence of filamentation (self-focusing) of a laser beam propagating in a laser-produced aluminium plasma". Journal of Physics D: Applied Physics. 12 (8): 1261–73. Bibcode:1979JPhD...12.1261D. doi:10.1088/0022-3727/12/8/005. S2CID   250749005.
  29. Del Pizzo, V.; Luther-Davies, B.; Siegrist, M. R. (1979). "Self-focussing of a laser beam in a multiply ionized, absorbing plasma". Applied Physics. 18 (2): 199–204. Bibcode:1979ApPhy..18..199D. doi:10.1007/BF00934416. S2CID   122912958.
  30. Faure, J.; Malka, V.; Marquès, J.-R.; David, P.-G.; Amiranoff, F.; Ta Phuoc, K.; Rousse, A. (2002). "Effects of pulse duration on self-focusing of ultra-short lasers in underdense plasmas". Physics of Plasmas. 9 (3): 756. Bibcode:2002PhPl....9..756F. doi:10.1063/1.1447556.
  31. Sun, Guo-Zheng; Ott, Edward; Lee, Y. C.; Guzdar, Parvez (1987). "Self-focusing of short intense pulses in plasmas". Physics of Fluids. 30 (2): 526. Bibcode:1987PhFl...30..526S. doi:10.1063/1.866349.
  32. Malka, V; Faure, J; Glinec, Y; Lifschitz, A.F (2006). "Laser-plasma accelerator: Status and perspectives". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 364 (1840): 601–10. Bibcode:2006RSPTA.364..601M. doi:10.1098/rsta.2005.1725. PMID   16483951. S2CID   12223379.
  33. Tabak, M.; Clark, D. S.; Hatchett, S. P.; Key, M. H.; Lasinski, B. F.; Snavely, R. A.; Wilks, S. C.; Town, R. P. J.; Stephens, R.; Campbell, E. M.; Kodama, R.; Mima, K.; Tanaka, K. A.; Atzeni, S.; Freeman, R. (2005). "Review of progress in Fast Ignition" (PDF). Physics of Plasmas. 12 (5): 057305. Bibcode:2005PhPl...12e7305T. doi:10.1063/1.1871246. hdl: 11094/3277 .
  34. Umstadter, Donald (2003). "Relativistic laser plasma interactions" (PDF). Journal of Physics D: Applied Physics. 36 (8): R151–65. doi:10.1088/0022-3727/36/8/202. hdl: 2027.42/48918 . S2CID   10185064.
  35. Khrapko, Rostislav; Lai, Changyi; Casey, Julie; Wood, William A.; Borrelli, Nicholas F. (2014). "Accumulated self-focusing of ultraviolet light in silica glass". Applied Physics Letters. 105 (24): 244110. Bibcode:2014ApPhL.105x4110K. doi: 10.1063/1.4904098 .
  36. Biria, Saeid (2017). "Coupling nonlinear optical waves to photoreactive and phase-separating soft matter: Current status and perspectives". Chaos. 27 (10): 104611. doi:10.1063/1.5001821. PMID   29092420.
  37. 1 2 Kewitsch, Anthony S.; Yariv, Amnon (1996). "Self-focusing and self-trapping of optical beams upon photopolymerization" (PDF). Optics Letters. 21 (1): 24–6. Bibcode:1996OptL...21...24K. doi:10.1364/ol.21.000024. PMID   19865292.
  38. Yamashita, T.; Kagami, M. (2005). "Fabrication of light-induced self-written waveguides with a W-shaped refractive index profile". Journal of Lightwave Technology. 23 (8): 2542–8. Bibcode:2005JLwT...23.2542Y. doi:10.1109/JLT.2005.850783. S2CID   36961681.
  39. 1 2 Biria, Saeid; Malley, Philip P. A.; Kahan, Tara F.; Hosein, Ian D. (2016). "Tunable Nonlinear Optical Pattern Formation and Microstructure in Cross-Linking Acrylate Systems during Free-Radical Polymerization". The Journal of Physical Chemistry C. 120 (8): 4517–28. doi:10.1021/acs.jpcc.5b11377.
  40. Burgess, Ian B.; Shimmell, Whitney E.; Saravanamuttu, Kalaichelvi (2007). "Spontaneous Pattern Formation Due to Modulation Instability of Incoherent White Light in a Photopolymerizable Medium". Journal of the American Chemical Society. 129 (15): 4738–46. doi:10.1021/ja068967b. PMID   17378567.
  41. Basker, Dinesh K.; Brook, Michael A.; Saravanamuttu, Kalaichelvi (2015). "Spontaneous Emergence of Nonlinear Light Waves and Self-Inscribed Waveguide Microstructure during the Cationic Polymerization of Epoxides". The Journal of Physical Chemistry C. 119 (35): 20606. doi:10.1021/acs.jpcc.5b07117.
  42. Biria, Saeid; Malley, Phillip P. A.; Kahan, Tara F.; Hosein, Ian D. (2016). "Optical Autocatalysis Establishes Novel Spatial Dynamics in Phase Separation of Polymer Blends during Photocuring". ACS Macro Letters. 5 (11): 1237–41. doi:10.1021/acsmacrolett.6b00659. PMID   35614732.
  43. Biria, Saeid; Hosein, Ian D. (2017-05-09). "Control of Morphology in Polymer Blends through Light Self-Trapping: An in Situ Study of Structure Evolution, Reaction Kinetics, and Phase Separation". Macromolecules. 50 (9): 3617–3626. Bibcode:2017MaMol..50.3617B. doi:10.1021/acs.macromol.7b00484. ISSN   0024-9297.
  44. Askadskii, A.A (1990). "Influence of crosslinking density on the properties of polymer networks". Polymer Science U.S.S.R. 32 (10): 2061–9. doi:10.1016/0032-3950(90)90361-9.

Bibliography