This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these template messages)
|
Kerr-lens mode-locking (KLM) is a method of mode-locking lasers via the nonlinear optical Kerr effect. This method allows the generation of pulses of light with a duration as short as a few femtoseconds.
The optical Kerr effect is a process which results from the nonlinear response of an optical medium to the electric field of an electromagnetic wave. The refractive index of the medium is dependent on the field strength. [1]
Because of the non-uniform power density distribution in a Gaussian beam (as found in laser resonators) the refractive index changes across the beam profile; the refractive index experienced by the beam is greater in the center of the beam than at the edge. Thus a rod of an active Kerr medium functions as a lens for high intensity light. This is called self-focusing and in extreme cases leads to material destruction. In the laser cavity short bursts of light will then be focused differently from continuous waves.
To favor the pulsed mode over continuous-wave, the cavity could be made unstable for continuous-wave operation, but more often a low stability is a by-product of a cavity design putting emphasis on aperture effects. Older designs used a hard aperture, that simply cuts off, while modern designs use a soft aperture, that means the overlap between the pumped region of the gain medium and the pulse. While the effect of a lens on a free laser beam is quite obvious, inside a cavity the whole beam tries to adapt to this change. The standard cavity with flat mirrors and a thermal lens in the laser crystal has the smallest beam width on the end-mirrors. With the additional Kerr lens the width on the end-mirror gets even smaller. Therefore, small end-mirrors (hard aperture) favor pulses. In Ti:Sapphire oscillators telescopes are inserted around the crystal to increase the intensity.
For a soft aperture consider an infinite laser crystal with a thermal lens. A laser beam is guided like in a glass fiber. With an additional Kerr lens the beam width gets smaller. In a real laser the crystal is finite. The cavity on both sides features a concave mirror and then a relative long path to a flat mirror. The continuous-wave light exits the crystal end face with a larger beam width and slight divergence. It illuminates a smaller area on the concave mirror, leading to a small beam-width on the way to the flat mirror. Thus diffraction is stronger. Because of the divergence the light is effectively coming from a point farther apart and leads to more convergence after the concave mirror. This convergence is balanced with diffraction. The pulsed light exits the end face with a smaller beam width and no divergence. Thus it illuminates a larger area on the concave mirror and is less convergent afterwards. So both continuous waves and pulsed light fronts are mirrored back onto themselves. A cavity close to a confocal one means to be close to instability, which means the beam diameter is sensitive to cavity changes. This emphasizes the modulation. With a slightly asymmetric cavity prolonging the cavity emphasizes diffraction and even makes it unstable for continuous-wave operation, while staying stable for pulsed operation.
The length of the medium used for KLM is limited by group velocity dispersion. KLM is used in Carrier envelope offset control.
Initiation of Kerr-lens modelocking depends on the strength of the nonlinear effect involved. If the laser field builds up in a cavity the laser has to overcome the region of continuous-wave operation, which often is favoured by the pumping mechanism. This can be achieved by a very strong Kerr-lensing that is strong enough to modelock due to small changes of the laser field strength (laser field build-up or stochastic fluctuations).
Modelocking can also be started by shifting the optimum focus from the continuous-wave operation to pulsed operation while changing the power density by kicking the end mirror of the resonator cavity (though a piezo mounted, synchronous oscillating end-mirror would be more 'turn key'). Other principles involve different nonlinear effects like saturable absorbers and saturable Bragg reflectors, which induce pulses short enough to initiate the Kerr-lensing process.
Intensity changes with lengths of nanoseconds are amplified by the Kerr-lensing process and the pulselength further shrinks to achieve higher field strengths in the center of the pulse. This sharpening process is only limited by the bandwidth achievable with the laser material and the cavity-mirrors as well as the dispersion of the cavity. The shortest pulse achievable with a given spectrum is called the bandwidth-limited pulse.
Chirped mirror technology allows to compensate for timing mismatch of different wavelengths inside the cavity due to material dispersion while keeping the stability high and the losses low.
The Kerr effect leads to the Kerr-lens and Self-phase modulation at the same time. To a first approximation it is possible to consider them as independent effects.
Since Kerr-lens modelocking is an effect that directly reacts on the electric field, the response time is fast enough to produce light pulses in the visible and near infrared with lengths of less than 5 femtoseconds. Due to the high electrical field strength focused ultrashort laser beams can overcome the threshold of 1014 W cm−2, which surpasses the field strength of the electron-ion bond in atoms.
These short pulses open the new field of ultrafast optics, which is a field of nonlinear optics that gives access to a completely new class of phenomena like measurement of electron movements in an atom (attosecond phenomena), coherent broadband light generation (ultrabroad lasers) and thereby gives rise to many new applications in optical sensing (e.g. coherent laser radar, ultrahigh resolution optical coherence tomography), material processing and other fields like metrology (extremely exact frequency and time measurements).
Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (values of atomic electric fields, typically 108 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.
Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.
Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example, in modern refractive surgery. The basis of the technique is to induce a fixed phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be "phase-locked" or "mode-locked".
An optical prism is a transparent optical element with flat, polished surfaces that are designed to refract light. At least one surface must be angled — elements with two parallel surfaces are not prisms. The traditional geometrical shape of an optical prism is that of a triangular prism with a triangular base and rectangular sides, and in colloquial use "prism" usually refers to this type. Some types of optical prism are not in fact in the shape of geometric prisms. Prisms can be made from any material that is transparent to the wavelengths for which they are designed. Typical materials include glass, acrylic and fluorite.
Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behavior of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.
Ti:sapphire lasers (also known as Ti:Al2O3 lasers, titanium-sapphire lasers, or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory.
The photorefractive effect is a nonlinear optical effect seen in certain crystals and other materials that respond to light by altering their refractive index. The effect can be used to store temporary, erasable holograms and is useful for holographic data storage. It can also be used to create a phase-conjugate mirror or an optical spatial soliton.
The Kerr effect, also called the quadratic electro-optic (QEO) effect, is a change in the refractive index of a material in response to an applied electric field. The Kerr effect is distinct from the Pockels effect in that the induced index change is directly proportional to the square of the electric field instead of varying linearly with it. All materials show a Kerr effect, but certain liquids display it more strongly than others. The Kerr effect was discovered in 1875 by John Kerr, a Scottish physicist.
Chirped pulse amplification (CPA) is a technique for amplifying an ultrashort laser pulse up to the petawatt level, with the laser pulse being stretched out temporally and spectrally, then amplified, and then compressed again. The stretching and compression uses devices that ensure that the different color components of the pulse travel different distances.
In nonlinear optics, filament propagation is propagation of a beam of light through a medium without diffraction. This is possible because the Kerr effect causes an index of refraction change in the medium, resulting in self-focusing of the beam.
This is a list of acronyms and other initialisms used in laser physics and laser applications.
An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber and transparent dielectric waveguides made of plastic and glass.
A fiber laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing. Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser.
In optics, a frequency comb is a laser source whose spectrum consists of a series of discrete, equally spaced frequency lines. Frequency combs can be generated by a number of mechanisms, including periodic modulation of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a mode-locked laser. Much work has been devoted to this last mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the Nobel Prize in Physics being shared by John L. Hall and Theodor W. Hänsch in 2005.
In optics, the term soliton is used to refer to any optical field that does not change during propagation because of a delicate balance between nonlinear and linear effects in the medium. There are two main kinds of solitons:
Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterized by an initial transverse intensity gradient, as in a laser beam. The peak intensity of the self-focused region keeps increasing as the wave travels through the medium, until defocusing effects or medium damage interrupt this process. Self-focusing of light was discovered by Gurgen Askaryan.
A laser beam profiler captures, displays, and records the spatial intensity profile of a laser beam at a particular plane transverse to the beam propagation path. Since there are many types of lasers — ultraviolet, visible, infrared, continuous wave, pulsed, high-power, low-power — there is an assortment of instrumentation for measuring laser beam profiles. No single laser beam profiler can handle every power level, pulse duration, repetition rate, wavelength, and beam size.
In nonlinear optics z-scan technique is used to measure the non-linear index n2 and the non-linear absorption coefficient Δα via the "closed" and "open" methods, respectively. As nonlinear absorption can affect the measurement of the non-linear index, the open method is typically used in conjunction with the closed method to correct the calculated value. For measuring the real part of the nonlinear refractive index, the z-scan setup is used in its closed-aperture form. In this form, since the nonlinear material reacts like a weak z-dependent lens, the far-field aperture makes it possible to detect the small beam distortions in the original beam. Since the focusing power of this weak nonlinear lens depends on the nonlinear refractive index, it would be possible to extract its value by analyzing the z-dependent data acquired by the detector and by cautiously interpreting them using an appropriate theory. To measure the imaginary part of the nonlinear refractive index, or the nonlinear absorption coefficient, the z-scan setup is used in its open-aperture form. In open-aperture measurements, the far-field aperture is removed and the whole signal is measured by the detector. By measuring the whole signal, the beam small distortions become insignificant and the z-dependent signal variation is due to the nonlinear absorption entirely. Despite its simplicity, in many cases, the original z-scan theory is not completely accurate, e.g. when the investigated sample has inhomogeneous optical nonlinear properties, or when the nonlinear medium response to laser radiation is nonlocal in space. Whenever the laser induced nonlinear response at a certain point of the medium is not solely determined by the laser intensity at that point, but also depends on the laser intensity in the surrounding regions, it will be called a nonlocal nonlinear optical response. Generally, a variety of mechanisms may contribute to the nonlinearity, some of which may be nonlocal. For instance, when the nonlinear medium is dispersed inside a dielectric solution, reorientation of the dipoles as a result of the optical field action is nonlocal in space and changes the electric field experienced by the nonlinear medium. The nonlocal z-scan theory, can be used for systematically analyzing the role of various mechanisms in producing the nonlocal nonlinear response of different materials.
A parametric process is an optical process in which light interacts with matter in such a way as to leave the quantum state of the material unchanged. As a direct consequence of this there can be no net transfer of energy, momentum, or angular momentum between the optical field and the physical system. In contrast a non-parametric process is a process in which any part of the quantum state of the system changes.
An acousto-optic programmable dispersive filter (AOPDF) is a special type of collinear-beam acousto-optic modulator capable of shaping spectral phase and amplitude of ultrashort laser pulses. AOPDF was invented by Pierre Tournois. Typically, quartz crystals are used for the fabrication of the AOPDFs operating in the UV spectral domain, paratellurite crystals are used in the visible and the NIR and calomel in the MIR (3-20 µm). Recently introduced Lithium niobate crystals allow for high-repetition rate operation owing to their high acoustic velocity. The AOPDF is also used for the active control of the carrier-envelope phase of the few-cycle optical pulses and as a part of pulse-measurement schemes. Although sharing a lot in principle of operation with an acousto-optic tunable filter, the AOPDF should not be confused with it, since in the former the tunable parameter is the transfer function and in the latter it is the impulse response