Asian Dust

Last updated

IPA: [ɦuaŋso]
Yellow Dust (China Dust)
S2001080041432.L1A HJMS.ChinaDust md.jpg
Dust clouds leaving mainland China and traveling toward Korea and Japan
Hakka
Romanization vong11 sa24
Yue: Cantonese
Jyutping wong4 sa1
Southern Min
Hokkien POJ hong2 sê1

Related Research Articles

<span class="mw-page-title-main">Desertification</span> Process by which fertile areas of land become increasingly arid

Desertification is a type of gradual land degradation of fertile land into arid desert due to a combination of natural processes and human activities.

<span class="mw-page-title-main">Smog</span> Smoke-like, fog-like air pollutions

Smog, or smoke fog, is a type of intense air pollution. The word "smog" was coined in the early 20th century, and is a portmanteau of the words smoke and fog to refer to smoky fog due to its opacity, and odor. The word was then intended to refer to what was sometimes known as pea soup fog, a familiar and serious problem in London from the 19th century to the mid-20th century, where it was commonly known as a London particular or London fog. This kind of visible air pollution is composed of nitrogen oxides, sulfur oxide, ozone, smoke and other particulates. Man-made smog is derived from coal combustion emissions, vehicular emissions, industrial emissions, forest and agricultural fires and photochemical reactions of these emissions.

<span class="mw-page-title-main">Dust storm</span> Meteorological phenomenon common in arid and semi-arid regions

A dust storm, also called a sandstorm, is a meteorological phenomenon common in arid and semi-arid regions. Dust storms arise when a gust front or other strong wind blows loose sand and dirt from a dry surface. Fine particles are transported by saltation and suspension, a process that moves soil from one place and deposits it in another.

<span class="mw-page-title-main">Dust</span> Small particles in the air and settling onto surfaces

Dust is made of fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind, volcanic eruptions, and pollution.

<span class="mw-page-title-main">Haze</span> Dry particulates obscuring clarity of the sky

Haze is traditionally an atmospheric phenomenon in which dust, smoke, and other dry particulates suspended in air obscure visibility and the clarity of the sky. The World Meteorological Organization manual of codes includes a classification of particulates causing horizontal obscuration into categories of fog, ice fog, steam fog, mist, haze, smoke, volcanic ash, dust, sand, and snow. Sources for particles that cause haze include farming, traffic, industry, windy weather, volcanic activity and wildfires. Seen from afar and depending on the direction of view with respect to the Sun, haze may appear brownish or bluish, while mist tends to be bluish grey instead. Whereas haze often is considered a phenomenon occurring in dry air, mist formation is a phenomenon in saturated, humid air. However, haze particles may act as condensation nuclei that leads to the subsequent vapor condensation and formation of mist droplets; such forms of haze are known as "wet haze".

<span class="mw-page-title-main">Pollution in China</span> Overview of pollution in China

Pollution in China is one aspect of the broader topic of environmental issues in China. Various forms of pollution have increased following the industrialisation of China, causing widespread environmental and health problems.

<span class="mw-page-title-main">Air pollution</span> Presence of dangerous substances in the atmosphere

Air pollution is the contamination of air due to the presence of substances called pollutants in the atmosphere that are harmful to the health of humans and other living beings, or cause damage to the climate or to materials. It is also the contamination of the indoor or outdoor environment either by chemical, physical, or biological agents that alters the natural features of the atmosphere. There are many different types of air pollutants, such as gases, particulates and biological molecules. Air pollution can cause diseases, allergies, and even death to humans; it can also cause harm to other living organisms such as animals and crops, and may damage the natural environment or built environment. Air pollution can be caused by both human activities and natural phenomena.

Ultrafine particles (UFPs) are particulate matter of nanoscale size (less than 0.1 μm or 100 nm in diameter). Regulations do not exist for this size class of ambient air pollution particles, which are far smaller than the regulated PM10 and PM2.5 particle classes and are believed to have several more aggressive health implications than those classes of larger particulates. Although they remain largely unregulated, the World Health Organization has published good practice statements regarding measuring UFPs.

<span class="mw-page-title-main">Pollution in California</span> Overview of pollution in the U.S. state of California

Pollution in California relates to the degree of pollution in the air, water, and land of the U.S. state of California. Pollution is defined as the addition of any substance or any form of energy to the environment at a faster rate than it can be dispersed, diluted, decomposed, recycled, or stored in some harmless form. The combination of three main factors is the cause of notable unhealthy levels of air pollution in California: the activities of over 39 million people, a mountainous terrain that traps pollution, and a warm climate that helps form ozone and other pollutants. Eight of the ten cities in the US with the highest year-round concentration of particulate matter between 2013 and 2015 were in California, and seven out of the ten cities in the US with the worst ozone pollution were also in California. Studies show that pollutants prevalent in California are linked to several health issues, including asthma, lung cancer, birth complications, and premature death. In 2016, Bakersfield, California recorded the highest level of airborne pollutants of any city in the United States.

<span class="mw-page-title-main">Air pollution in Mexico City</span> Poor quality of air in the capital and largest city of Mexico

Air Pollution in Mexico City has been of concern to the city's population and health officials for decades. In the 20th century, Mexico City's population rapidly increased as industrialization brought thousands of migrants from all over the world. Such a rapid and unexpected growth led to the UN declaring Mexico City as the most polluted city in the world in 1992. This was partly due to Mexico City's high altitude, which causes its oxygen levels to be 25% lower. Carbon-based fuels also do not combust completely. Other factors include the proliferation of vehicles, rapid industrial growth, and the population boom. The Mexican government has several active plans to reduce emission levels which require citizen participation, vehicular restrictions, increase of green areas, and expanded bicycle accessibility.

<span class="mw-page-title-main">Particulates</span> Microscopic solid or liquid matter suspended in the Earths atmosphere

Particulates or atmospheric particulate matter are microscopic particles of solid or liquid matter suspended in the air. The term aerosol commonly refers to the particulate/air mixture, as opposed to the particulate matter alone. Sources of particulate matter can be natural or anthropogenic. They have impacts on climate and precipitation that adversely affect human health, in ways additional to direct inhalation.

<span class="mw-page-title-main">Stubble burning</span> Agricultural practice

Stubble burning is the practice of intentionally setting fire to the straw stubble that remains after grains, such as rice and wheat, have been harvested. The technique is still widespread today.

<span class="mw-page-title-main">2013 Eastern China smog</span> Air pollution event in eastern China

The 2013 Eastern China smog was a severe air pollution episode that affected East China, including all or parts of the municipalities of Shanghai and Tianjin, and the provinces of Hebei, Shandong, Jiangsu, Anhui, Henan, and Zhejiang, during December 2013. A lack of cold air flow, combined with slow-moving air masses carrying industrial emissions, collected airborne pollutants to form a thick layer of smog over the region. Levels of PM2.5 particulate matter averaged over 150 micrograms per cubic metre; in some areas, they were 300 to 500 micrograms per cubic metre.

<span class="mw-page-title-main">Environmental issues in Mongolia</span>

There are many pressing environmental issues in Mongolia that are detrimental to both human and environmental wellness. These problems have arisen in part due to natural factors, but increasingly because of human actions. One of these issues is climate change, which will be responsible for an increase in desertification, natural disasters, and land degradation. Another is deforestation, which is expanding due to human activity, pests, disease, and fires. Mongolian lands are becoming more arid through desertification, a process that is being exacerbated due to irresponsible land use. Additionally, more and more species are disappearing and at risk for extinction. Moreover, especially in population centers, Mongolians deal with air and water pollution caused by industrialization.

Fugitive dust is an environmental air quality term for very small particles suspended in the air, primarily mineral dust that is sourced from the soil of Earth's pedosphere. A significant volume of fugitive dust that is visible from a distance is known as a dust cloud, and a large dust cloud driven by a gust front is known as a dust storm.

<span class="mw-page-title-main">Air pollution in South Korea</span>

Air pollution in South Korea is an increasing threat to people and the environment. The air pollution comes from many sources, both domestic and international. Many forms of pollution have increased in South Korea since its rapid industrialization, especially in Seoul and other cities. According to the U.S. National Aeronautics and Space Administration (NASA), Seoul is one of the world's cities with the worst air pollution. From 2009 and 2013, the city's mean PM10 were higher than in many of the largest metropolitan cities in the world such as: Los Angeles, Tokyo, Paris, and London. This has resulted in health and environmental problems. Koreans buy masks and air purifiers to breathe cleaner air, and are working to reduce the country's emissions.

<span class="mw-page-title-main">2021 East Asia sandstorm</span> 2021 sandstorm in East Asia

The 2021 East Asia sandstorm was a meteorological phenomenon that began in the Eastern Gobi desert steppe on March 14, and subsequently spread to the entire Mongolian Plateau South, the Loess Plateau, the North China Plain and the Korean Peninsula. It was caused by strong northwest winds coming in from Mongolia, as a result of hot and dry conditions.

Pollution in Korea has become diversified and serious due to rapid industrialization and urbanization since the 1960s. The causes of environmental pollution, both in South and North Korea, can be found in population growth, urban concentration, and industrial structure, similar to the rest of the world.

Particulate pollution is pollution of an environment that consists of particles suspended in some medium. There are three primary forms: atmospheric particulate matter, marine debris, and space debris. Some particles are released directly from a specific source, while others form in chemical reactions in the atmosphere. Particulate pollution can be derived from either natural sources or anthropogenic processes.

References

  1. "気象庁|黄砂に関する基礎知識". www.data.jma.go.jp (in Japanese). Retrieved January 2, 2021.
  2. 1 2 Goudie, A.S. and Middleton, N.J. 1992. The changing frequency of dust storms through time. Climatic Change 20(3):197–225.
  3. 1 2 Liu Tungsheng, Gu Xiongfei, An Zhisheng and Fan Yongxiang. 1981. The dust fall in Beijing, China, on April 18. 1981. In: Péwé, T.L. (ed), Desert dust: origin, characteristics, and effect on man, Geological Society of America, Special Paper 186, pp. 149–157.
  4. 1 2 Chun Youngsin, Cho Hi-Ku, Chung Hyo-Sang and Lee Meehye. 2008. Historical records of Asian dust events (Hwangsa) in Korea. Bulletin of the American Meteorological Society 89(6):823–827. doi : 10.1175/2008BAMS2159.1
  5. 1 2 "Ill Winds". Science News Online. Archived from the original on March 19, 2004. Retrieved October 6, 2001.
  6. 1 2 3 4 5 6 Kang, Dongmug; Kim, Jong-Eun (April 25, 2014). "Fine, Ultrafine, and Yellow Dust: Emerging Health Problems in Korea". Journal of Korean Medical Science. 29 (5): 621–622. doi:10.3346/jkms.2014.29.5.621. ISSN   1011-8934. PMC   4024940 . PMID   24851015.
  7. 1 2 Li, Jing-Neng (1990). "Comment: Population Effects on Deforestation and Soil Erosion in China". Population and Development Review. 16: 254–258. doi:10.2307/2808075. ISSN   0098-7921. JSTOR   2808075.
  8. Kurai, Jun; Watanabe, Masanari; Noma, Hisashi; Iwata, Kyoko; Taniguchi, Jumpei; Sano, Hiroyuki; Tohda, Yuji; Shimizu, Eiji (November 1, 2017). "Estimation of the effects of heavy Asian dust on respiratory function by definition type". Genes and Environment. 39: 25. doi: 10.1186/s41021-017-0085-9 . ISSN   1880-7046. PMC   5664575 . PMID   29118866.
  9. 1 2 Kim, Hyun-Sun; Kim, Dong-Sik; Kim, Ho; Yi, Seung-Muk (2012). "Relationship between mortality and fine particles during Asian dust, smog-Asian dust, and smog days in Korea". International Journal of Environmental Health Research. 22 (6): 518–530. doi:10.1080/09603123.2012.667796. ISSN   1369-1619. PMID   22428926. S2CID   11959964.
  10. 1 2 3 4 Fifield, Anna (April 27, 2017). "Smog becomes a political issue in South Korean election". Washington Post. Retrieved March 5, 2019.
  11. Kwon, Ho-Jang; Cho, Soo-Hun; Chun, Youngsin; Lagarde, Frederic; Pershagen, Göran (September 2002). "Effects of the Asian dust events on daily mortality in Seoul, Korea". Environmental Research. 90 (1): 1–5. Bibcode:2002ER.....90....1K. doi:10.1006/enrs.2002.4377. ISSN   0013-9351. PMID   12359184.
  12. 1 2 3 "Fine dust forces Koreans to change way of life". The Korea Times . January 22, 2019. Retrieved March 5, 2019.
  13. Park, Si-soo (January 15, 2019). "97% of Koreans suffer 'physical or mental' distress due to fine dust: survey". The Korea Times . Retrieved March 5, 2019.
  14. Bak, Se-hwan (April 27, 2017). "Education Ministry moves to shield kids from air pollution". The Korea Herald . Retrieved March 5, 2019.
  15. 1 2 3 Kim Rahn (April 5, 2007). "Washing dust off jumbo jet costs 3 million won". The Korea Times . Retrieved April 5, 2007.
  16. 1 2 "Air purifier sales up 414 % after dust attack in Korea". Retail News Asia. January 23, 2019. Retrieved March 5, 2019.
  17. 1 2 Jeong, Dai-yeun (2008). "Socio-Economic Costs from Yellow Dust Damages in South Korea". Korea Social Science Journal. 35: 1–29 via The Korean Social Science Research Council.
  18. Ai, Ning; Polenske, Karen R. (June 2008). "Socioeconomic Impact Analysis of Yellow-dust Storms: An Approach and Case Study for Beijing". Economic Systems Research. 20 (2): 187–203. doi:10.1080/09535310802075364. ISSN   0953-5314. S2CID   153868768.
  19. Kurtz, Andrew C.; Derry, Louis A.; Chadwick, Oliver A. (2001). "Accretion of Asian dust to Hawaiian soils: Isotopic, elemental, and mineral mass balances". Geochimica et Cosmochimica Acta. 65 (12): 1971. Bibcode:2001GeCoA..65.1971K. doi:10.1016/S0016-7037(01)00575-0.
  20. Zhang, Muhui (January 5, 2024). "Transboundary fine dust pollution in China and Korea: How has international politics impeded environmental negotiations?". Asia & the Pacific Policy Studies. 11 (1): 1–14 via Wiley Online Library.
  21. 1 2 노, 진섭 (November 27, 2018). "영화 같은 중국발 '슈퍼 황사' 55년간 5배 증가". Sisa Journal (in Korean). Retrieved March 5, 2019.
  22. "More fine dust warnings issued this year: data". The Korea Times . April 10, 2018. Retrieved March 5, 2019.
  23. Wang Ying. "Operation blitzkrieg against desert storm". China Daily. Archived from the original on April 10, 2007. Retrieved April 3, 2007.
  24. 誠而, 早川; 直子, 山本 (2008). "エルニーニョ・ラニーニャ現象とゴビ砂漠付近の砂塵嵐及び九州地方の黄砂観測日数との関係". 環境情報科学論文集 (in Japanese). ceis22. 一般社団法人 環境情報科学センター: 115–120. doi:10.11492/ceispapers.ceis22.0.115.0.