Agricultural spray adjuvant

Last updated

Agricultural spray adjuvants are part of integrated pest management, and during pesticide application are used to enhance the effectiveness of pesticides, herbicides, insecticides, fungicides and other agents that control or eliminate unwanted pests. As with medical adjuvants, agricultural spray adjuvants are not themselves active in controlling or killing pests. Instead, these additives modify some property of the spray solution, which improves the ability of the pesticide to penetrate, target or protect the target organism. Among the typical types of ingredients used are surfactants, emulsifiers, oils and salts. Each of these ingredients, and others, modifies the spray solution itself to improve such properties as spreading, penetration, droplet size or other characteristics.

Contents

These additives may be included in a formulation with a pesticide or may be added separately to a tank. When they are included in the pesticide formulations themselves, they are called in-can adjuvants. Agricultural spray adjuvants may also be added separately when the spray solution is being prepared. In this case, the adjuvant is called a tank mix adjuvant. When delivered in-can, adjuvants may be quite effective. However, because of the limited space or limited compatibility in a pesticide formulation, not all necessary adjuvants may be included in-can. Thus, the addition of tank mix adjuvants may be necessary to optimize performance of the pesticide.

Agricultural spray adjuvants do not reduce the amount of pesticide needed below the recommended use rate on a pesticide label. In fact, it is illegal to use a pesticide in the US outside of the instructions on the label, although FIFRA, the US law governing pesticide use, does allow for the use of pesticides at rates below the label, as long as the label does not specifically deny such use. Agricultural spray adjuvants are used to enhance the performance of the legal amount of a pesticide that may be used. These adjuvants give more consistent performance and may make up for under-performance under certain conditions.

In the United States, agricultural tank adjuvants are essentially unregulated except in a few isolated cases. The states of Washington and California require that adjuvants be registered before they can be sold. Other states may or may not regulate adjuvants at some level. There is no federal regulation of tank mix adjuvants.

However, the industry itself has several efforts underway in order to self regulate the products. The ASTM International (ASTM) E35.22 committee is the committee that defines agricultural tank mix claims for the industry. The standard E1519 defines the various claims that an adjuvant may make and reference the methods by which the claim may be proven. The methods are tests, which when applied to a given sample, prove that the material meets the claimed standard.

Supporting the activities of ASTM is the Council of Producers & Distributors of Agrotechnology (CPDA), an organization of inert (or other) ingredient and adjuvant manufacturers. CPDA certifies adjuvants by creating certain minimum standards that must be met in order to receive the CPDA stamp of certification.

In Canada, adjuvants are regulated by the Pest Management Regulatory Agency (PMRA) section of Health Canada. Each adjuvant must be tested and be proven to be safe and effective with every active ingredient with which it will be used. This much more stringent requirement prevents both the widespread use and questionable content present in the United States.

In the UK, the Chemical Regulations Directorate (CRD), part of the Health and Safety Executive, oversees the use of adjuvants. CRD defines an adjuvant as a substance other than water which is not in itself a pesticide but which enhances or is intended to enhance the effectiveness of the pesticide with which it is used. Adjuvants for use with agricultural pesticides have been categorised as extenders, wetting agents, sticking agents and fogging agents.

The Council of Producers & Distributors of Agrotechnology offers participating companies the ability to self-certify their spray adjuvant products in the USA.

Related Research Articles

<span class="mw-page-title-main">Herbicide</span> Type of chemical used to kill unwanted plants

Herbicides, also commonly known as weed killers, are substances used to control undesired plants, also known as weeds. Selective herbicides control specific weed species while leaving the desired crop relatively unharmed, while non-selective herbicides kill plants indiscriminately. The combined effects of herbicides, nitrogen fertilizer, and improved cultivars has increased yields of major crops by 3x to 6x from 1900 to 2000.

Roundup is a brand name of herbicide originally produced by Monsanto, which Bayer acquired in 2018. Prior to the late-2010s formulations, it used broad-spectrum glyphosate-based herbicides. As of 2009, sales of Roundup herbicides still represented about 10 percent of Monsanto's revenue despite competition from Chinese producers of other glyphosate-based herbicides. The overall Roundup line of products represented about half of Monsanto's yearly revenue in 2009. The product is marketed to consumers by Scotts Miracle-Gro Company. In the late-2010s other non-glyphosate containing herbicides were also sold under the Roundup brand.

<span class="mw-page-title-main">Glyphosate</span> Systemic herbicide and crop desiccant

Glyphosate is a broad-spectrum systemic herbicide and crop desiccant. It is an organophosphorus compound, specifically a phosphonate, which acts by inhibiting the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSP). It is used to kill weeds, especially annual broadleaf weeds and grasses that compete with crops. Its herbicidal effectiveness was discovered by Monsanto chemist John E. Franz in 1970. Monsanto brought it to market for agricultural use in 1974 under the trade name Roundup. Monsanto's last commercially relevant United States patent expired in 2000.

<span class="mw-page-title-main">Piperonyl butoxide</span> Chemical compound

Piperonyl butoxide (PBO) is a pale yellow to light brown liquid organic compound used as an adjuvant component of pesticide formulations for synergy. That is, despite having no pesticidal activity of its own, it enhances the potency of certain pesticides such as carbamates, pyrethrins, pyrethroids, and rotenone. It is a semisynthetic derivative of safrole and is produced from the condensation of the sodium salt of 2-(2-butoxyethoxy) ethanol and the chloromethyl derivative of hydrogenated safrole (dihydrosafrole). Although this route of synthesis has faced a lot of criticism in recent times. The new route of synthesis is through 1,2-Methylenedioxybenzene, developed by The Anthea Group and patented in 2019.

<span class="mw-page-title-main">Organic movement</span>

The organic movement broadly refers to the organizations and individuals involved worldwide in the promotion of organic food and other organic products. It started during the first half of the 20th century, when modern large-scale agricultural practices began to appear.

Excipient is a substance formulated alongside the active ingredient of a medication. Excipients serve various purposes, including long-term stabilization, bulking up solid formulations containing potent active ingredients in small amounts, or enhancing the therapeutic properties of the active ingredient in the final dosage form. They can facilitate drug absorption, reduce viscosity, or enhance solubility. Excipients can also aid in the manufacturing process by improving the handling of active substances, facilitating powder flowability, or preventing denaturation and aggregation during the expected shelf life. The selection of excipients depends on factors such as the route of administration, dosage form, and active ingredient.

Quillaia is the milled inner bark or small stems and branches of the soapbark. Other names include Murillo bark extract, Panama bark extract, Quillaia extract, Quillay bark extract, and Soapbark extract. Quillaia contains high concentrations of saponins that can be increased further by processing. Highly purified saponins from quillaia are used as adjuvants to enhance the effectiveness of vaccines. Other compounds in the crude extract include tannins and other polyphenols, and calcium oxalate.

<i>Quillaja saponaria</i> Species of plant

Quillaja saponaria, the soap bark tree or soapbark, is an evergreen tree in the family Quillajaceae, native to warm temperate central Chile. In Chile it occurs from 32 to 40° South Latitude approximately and at up to 2000 m (6500 ft) above sea level. It can grow to 15–20 m (50–65 ft) in height. The tree has thick, dark bark; smooth, leathery, shiny, oval evergreen leaves 3–5 cm long; white star-shaped flowers 15 mm diameter borne in dense corymbs; and a dry fruit with five follicles each containing 10–20 seeds. The tree has several practical and commercial uses.

<span class="mw-page-title-main">Federal Insecticide, Fungicide, and Rodenticide Act</span> US federal law governing pesticide regulation

The Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) is a United States federal law that set up the basic U.S. system of pesticide regulation to protect applicators, consumers, and the environment. It is administered and regulated by the United States Environmental Protection Agency (EPA) and the appropriate environmental agencies of the respective states. FIFRA has undergone several important amendments since its inception. A significant revision in 1972 by the Federal Environmental Pesticide Control Act (FEPCA) and several others have expanded EPA's present authority to oversee the sales and use of pesticides with emphasis on the preservation of human health and protection of the environment by "(1) strengthening the registration process by shifting the burden of proof to the chemical manufacturer, (2) enforcing compliance against banned and unregistered products, and (3) promulgating the regulatory framework missing from the original law".

A biopesticide is a biological substance or organism that damages, kills, or repels organisms seen as pests. Biological pest management intervention involves predatory, parasitic, or chemical relationships.

<span class="mw-page-title-main">Sprayer</span> Agricultural machine used in farms

A sprayer is a device used to spray a liquid, where sprayers are commonly used for projection of water, weed killers, crop performance materials, pest maintenance chemicals, as well as manufacturing and production line ingredients. In agriculture, a sprayer is a piece of equipment that is used to apply herbicides, pesticides, and fertilizers on agricultural crops. Sprayers range in size from man-portable units to trailed sprayers that are connected to a tractor, to self-propelled units similar to tractors with boom mounts of 4–30 feet (1.2–9.1 m) up to 60–151 feet (18–46 m) in length depending on engineering design for tractor and land size.

<span class="mw-page-title-main">Azoxystrobin</span> Chemical compound

Azoxystrobin is a broad spectrum systemic fungicide widely used in agriculture to protect crops from fungal diseases. It was first marketed in 1996 using the brand name Amistar and by 1999 it had been registered in 48 countries on more than 50 crops. In the year 2000 it was announced that it had been granted UK Millennium product status.

<span class="mw-page-title-main">Cyhalothrin</span> Synthetic pyrethroid used as insecticide

Cyhalothrin is the ISO common name for an organic compound that, in specific isomeric forms, is used as a pesticide. It is a pyrethroid, a class of synthetic insecticides that mimic the structure and properties of the naturally occurring insecticide pyrethrin which is present in the flowers of Chrysanthemum cinerariifolium. Pyrethroids such as cyhalothrin are often preferred as an active ingredient in agricultural insecticides because they are more cost-effective and longer acting than natural pyrethrins. λ-and γ-cyhalothrin are now used to control insects and spider mites in crops including cotton, cereals, potatoes and vegetables.

<span class="mw-page-title-main">Pesticide application</span> Delivery of pesticides

Pesticide application refers to the practical way in which pesticides are delivered to their biological targets. Public concern about the use of pesticides has highlighted the need to make this process as efficient as possible, in order to minimise their release into the environment and human exposure. The practice of pest management by the rational application of pesticides is supremely multi-disciplinary, combining many aspects of biology and chemistry with: agronomy, engineering, meteorology, socio-economics and public health, together with newer disciplines such as biotechnology and information science.

<span class="mw-page-title-main">Pesticide drift</span> Diffusion of pesticides into the environment

Pesticide drift, also known as spray drift refers to the unintentional diffusion of pesticides toward nontarget species. It is one of the most negative effects of pesticide application. Drift can damage human health, environment, and crops. Together with runoff and leaching, drift is a mechanism for agricultural pollution. Some drift results from contamination of sprayer tanks.

<span class="mw-page-title-main">Ultra-low volume</span>

Ultra-low volume (ULV) application of pesticides has been defined as spraying at a Volume Application Rate (VAR) of less than 5 L/ha for field crops or less than 50 L/ha for tree/bush crops. VARs of 0.25 – 2 L/ha are typical for aerial ULV application to forest or migratory pests. In order to maintain efficacy at such low rates, droplet size must be rigorously controlled in order to minimise waste: this is Controlled Droplet Application (CDA). Although often designed for non-evaporative formulations, ULV equipment may sometimes be adapted for use with water, often at Very Low volume VAR.

The biological activity of a pesticide, be it chemical or biological in nature, is determined by its active ingredient. Pesticide products very rarely consist of the pure active ingredient. The AI is usually formulated with other materials and this is the product as sold, but it may be further diluted in use. Formulations improve the properties of a chemical for handling, storage, application and may substantially influence effectiveness and safety.

<span class="mw-page-title-main">Pesticide regulation in the United States</span>

Pesticide regulation in the United States is primarily a responsibility of the Environmental Protection Agency (EPA). In America, it was not till the 1950s that pesticides were regulated in terms of their safety. The Pesticides Control Amendment (PCA) of 1954 was the first time Congress passed guidance regarding the establishment of safe limits for pesticide residues on food. It authorized the Food and Drug Administration (FDA) to ban pesticides they determined to be unsafe if they were sprayed directly on food. The Food Additives Amendment, which included the Delaney Clause, prohibited the pesticide residues from any carcinogenic pesticides in processed food. In 1959, pesticides were required to be registered.

Specialty chemicals are particular chemical products which provide a wide variety of effects on which many other industry sectors rely. Some of the categories of speciality chemicals are adhesives, agrichemicals, cleaning materials, colors, cosmetic additives, construction chemicals, elastomers, flavors, food additives, fragrances, industrial gases, lubricants, paints, polymers, surfactants, and textile auxiliaries. Other industrial sectors such as automotive, aerospace, food, cosmetics, agriculture, manufacturing, and textiles are highly dependent on such products.

Glyphosate-based herbicides are usually made of a glyphosate salt that is combined with other ingredients that are needed to stabilize the herbicide formula and allow penetration into plants. The glyphosate-based herbicide Roundup was first developed by Monsanto in the 1970s. It is used most heavily on corn, soy, and cotton crops that have been genetically modified to be resistant to the herbicide. Some products include two active ingredients, such as Enlist Duo which includes 2,4-D as well as glyphosate. As of 2010, more than 750 glyphosate products were on the market. The names of inert ingredients used in glyphosate formulations are usually not listed on the product labels.

References