Diamondback moth

Last updated

Diamondback moth
Plutella.xylostella.7383.jpg
Plutella xylostella2.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Lepidoptera
Family: Plutellidae
Genus: Plutella
Species:
P. xylostella
Binomial name
Plutella xylostella
Synonyms
List
    • Phalaena xylostellaLinnaeus, 1758
    • Phalaena tinea xylostellaLinnaeus, 1758
    • Cerostoma xylostella(Linnaeus, 1777)
    • Cerostoma maculipennisCurtis, 1832
    • Plutella maculipennis
    • Plutella albovenosa(Walsingham, 1907)
    • Plutella karsholtellaBaraniak, 2003
    • Plutella cruciferarum Zeller, 1843
    • Plutella brassicella Fitch, 1856
    • Plutella limbipennella Clemens, 1860
    • Plutella mollipedella Clemens, 1860
    • Gelechia cicerella Rondani, 1876
    • Tinea galeatella Mabille, 1888
    • Plutella dubiosella Beutenmüller, 1889
    • Plutella dudiosalla Moriuti, 1977

The diamondback moth (Plutella xylostella), sometimes called the cabbage moth, is a moth species of the family Plutellidae and genus Plutella . The small, grayish-brown moth sometimes has a cream-colored band that forms a diamond along its back. [1] The species may have originated in Europe, South Africa, or the Mediterranean region, but it has now spread worldwide. [2] [3]

Contents

The moth has a short life cycle (14 days at 25 °C), is highly fecund, and is capable of migrating long distances. [4] Diamondback moths are considered pests as they feed on the leaves of cruciferous crops and plants that produce glucosinolates. [4] However, not all of these plants are equally useful as hosts to the moth. Because of this, studies have suggested using wintercress as a trap crop around agricultural fields because diamondback moths are highly attracted to that plant but their larvae fail to survive when eggs are laid on it. [5]

Originally, pesticides were used to kill the moths but diamondbacks have developed resistance to many of the common chemicals. For this reason, new biological and chemical controls, as well as different planting methods are being pursued to reduce the destruction caused by the moths. [1] [6]

Description

This small moth is colored gray and brown. It can potentially identified by a cream-colored band that may be present in the shape of a diamond on its back. [1] The diamondback moth has a wingspan of about 15 mm and a body length of 6 mm. The forewings are narrow, brownish gray and lighter along the anterior margin, with fine, dark speckles. A creamy-colored stripe with a wavy edge on the posterior margin [2] is sometimes constricted to form one or more light-colored diamond shapes, which is the basis for the common name of this moth. The hindwings are narrow, pointed toward the apex, and light gray, with a wide fringe. The tips of the wings can be seen to turn upward slightly when viewed from the side. The antennae are pronounced. [1]

The adults of this species are visually identical to the adults of the New Zealand endemic moth Plutella antiphona. [7]

Geographic range

The diamondback moth has a global distribution and is found in Europe, Asia, Africa, the Americas, Australia, New Zealand, and the Hawaiian Islands. [2] It is said by some experts to be the most widely distributed of all Lepidoptera, but despite tremendous interest in limiting the damage it causes, the actual available data is inadequate. [FWD 1] It probably originated in Europe, South Africa, or the Mediterranean region, but the exact migration path is not known. [1] [3] However, in North America it was observed in Illinois in 1854, and then found in Florida and the Rocky Mountains by 1883. Although diamondback moths cannot overwinter effectively in cold climates, it was found in British Columbia by 1905 and is now present in several Canadian regions. [1]

Parental care

Oviposition

Diamondback moths prefer the cabbage plant, from the plant species Brassica oleracea , as their host plant. The females lay eggs only on the leaves of the cabbage and do not discriminate between young and more developed leaves. However, females are more likely to deposit their eggs on a host with larval infestation. It is not fully known why females do not choose the uninfested host, but it is thought that a specific, attractive odor is emitted by the infested host. [6]

Female diamondback moths use both gustatory and olfactory stimuli to determine where to lay their eggs. When both stimuli are available, more eggs are deposited. If gustatory stimuli or both gustatory and olfactory signals are absent, female moths will not lay their eggs. However, if only olfactory signals are absent, oviposition will continue. [8]

Host plant learning and selection for egg laying

Host plants

Host plant selection is crucial because diamondbacks spend the majority of their life near their host plant. [6] The diamondback moth lays its eggs only on plants in the family Brassicaceae. [4] Nearly all cruciferous vegetable crops are attacked, but some are favored over others.

These include

Several wild species in the family also act as hosts, especially early in the season when cultivated crops are unavailable. [1] The egg-laying females have been reported to recognize chemicals in the host plants, glucosinolates and isothiocyanates, that are characteristic of the family Brassicaceae (but also occur in some related families). These chemicals were found to stimulate oviposition, even when applied to a piece of paper. [9] One plant species that contains the egg-laying cues is wintercress, Barbarea vulgaris . Indeed, diamondback moth females lay eggs on this plant species, but the newly hatched larvae die due to the effects of additional natural plant chemicals called saponins. [9] [10]

Odor

Different behaviors occur before a female diamondback moth deposits her eggs. While virgin and mated females both have the same sensitivity to a host plant's odor, pregnant diamondback females are more strongly drawn and sensitive to it because they are in search of a place to lay their eggs. [6]

Diamondbacks are nocturnal and use their olfactory system to discover the host plant odor. [6] Additionally, in order to search for the host odor, they rotate their antennas. When the host odor is not present or in low concentrations the moth spends more time rotating its antennas. [8] A moth has increased antennal rotation activity when it is near an uninfested host when compared to an infested host which indicates that the damaged host leaves emit a stronger odor. [6]

Taste and touch

Antennation occurs when the moth hits its antennae on the leaf. This behavior is likely used to taste the host site. Only after antennation will the moth sweep its ovipositor across the site of deposition in order to gather more information about the host. Because the female moths lay their eggs one at a time and prefer crevices, they search for grooves on the leaves. The crevices may offer protection and easy access to food sources. However, grooves on leaves do not determine when oviposition occurs, but they may play a higher role in egg placement. [8]

Life cycle

Eggs Plutella xylostella eggs.jpg
Eggs

Eggs

The eggs are oval and flattened, measuring 0.44 mm long and 0.26 mm wide. They are yellow or pale green at first, but darken later. [2] They are laid singly or in groups of two to eight eggs in depressions on the surface of leaves. Females may deposit up to 300 eggs in total, but average production is probably half that amount. The larvae emerge from the eggs in about six to seven days. [1]

Larvae

The larvae have four instars, each with an average development time of about four days. The larval body form tapers at both ends. The larvae have a few short black hairs and are colorless in the first instar, but pale or emerald green with black heads in later instars. [11] Of the five pairs of prolegs, one protrudes from the posterior end, forming a distinctive "V". The larvae are quite active, and when disturbed, may wriggle violently, move backward, and spin a strand of silk from which to dangle. [12]

The feeding habit of the first instar is leaf mining, although they are so small, the mines are difficult to detect. The larvae emerge from these mines to moult and subsequently feed on the lower surface of the leaf. Their chewing results in irregular patches of damage, though the upper leaf epidermis is often left intact. [1] These irregular patches are called window panes. [11]

Sex pheromone effect on larvae

When female diamondback moths lay their eggs, some of their sex pheromones are left behind on the leaves. Diamondback larvae are attracted to the major component of this species-specific pheromone, which is (Z)11-hexadecenal. For larvae, the sex pheromone is a foraging indicator, rather than a mating attractant so they use it to find a healthy source of food and avoid competition for food from other species on the host plant. After the fourth instar, larvae are no longer attracted to the sex pheromone for food sources. [12]

Pupa Plutella xylostella pupa dorsal.jpg
Pupa

Pupa

The yellowish pupae are about 8 mm long and are wrapped in a loose silk cocoon. They are usually found on the lower or outer leaves of the food plant, but on cauliflower and broccoli, pupation may occur in the florets. [1] It is possible for a pupa to fall off of its host plant. [13] The pupal stage lasts on average for about eight days, but ranges from five to fifteen days. [1] Before emergence occurs, pupa will turn from a yellowish color to a browner color. [13]

Adult

The lifespan averages three to four weeks for females, but less for males. [2] These moths are weak fliers, seldom rising more than 2 m above the ground and not flying long distances. They are, however, passive migrants, being easily transferred by wind over long distances. [2] [1] Diamondback moths overwinter as adults among field debris of cruciferous crops, and active adults may be seen during warm periods at any time during the winter in temperate areas. [11] They do not survive cold winters and reinvade colder areas each spring, being carried there by the wind. [1] Moths are active usually at twilight and at night, feeding on flowers of cruciferous plants, but they also fly in the afternoon during mass outbreaks. [2]

Enemies

Chrysoperla carnea Chrysoperla carnea zlotook pospolity.jpg
Chrysoperla carnea

Predators and parasites

The agriculture industry has been trying to find biological and natural ways to eliminate the diamondback moth especially since the moths have become resistant to pesticides. Common enemies of the moth include the parasitoids Trichogramma chilonis and Cotesia plutella and the predator Chrysoperla carnea , a lacewing. Lacewings feed on eggs and young larvae, while the parasitoids attack the eggs. These organisms can recognize diamondback sex pheromones, larval frass odors, and green leaf volatiles emitted from cabbage. Cabbage odors in combination with the sex pheromone are particularly capable of attracting the predators and parasitoids, which will then consume the diamondback larvae and eggs. [14]

Mating

Pheromones

Female diamondback moths secrete a sex hormone that attracts males who have developed an olfactory system that can detect female sex hormones from a long distance. [15] Female sex pheromone emission, courtship, and mating occur near the host plant and may be enhanced due to host cues. [6]

Climate plays a role in the body size of the diamondback both. However, regardless of the climate, even a few days of high temperatures can lead to lower reproductive success in females. It is possible that high temperatures can decrease the concentration of sex pheromones released by female, thereby delaying the time for mating. [16]

Number of mates

Multiple mating can be beneficial to certain species because it allows for increased reproduction and a variety of genes in offspring. In some cases, females prefer multiple matings because it increases their lifespan as they receive nutrients from males during copulation. It is possible for diamondback moths to mate multiple times, but monogamy seems to be more common. When males have more than one mate, they do not receive any benefit. In fact, their fitness and lifespan decreases along with the success rate of reproduction. Additionally, females who mate with multiple mated males, experience decreased longevity and fecundity. Copulation duration has also been shown to increase when males mate multiple times. A longer mating time is disadvantageous to diamondback moths as it leaves the diamondback moth open to predation and injury from copulation. [17]

While male diamondbacks can mate multiple times, females show a clear preference for mating once. One of the reasons may be that female diamondback moths only need one mating event to fertilize all of her eggs. The females do this by securing extra sperm from the single mating and creates a spermatophore. In addition, a female can deter disadvantageous multiple mating by forming a mating plug. [17]

Interaction with humans

Pest of crops

DBM is the worst pest of Brassicas in the world, and an increasing problem in canola. [FWD 2] Larvae damage leaves, buds, flowers, and seed buds of cultivated cruciferous plants. Although the larvae are small, they can be very numerous and cause complete removal of foliar tissue except for the leaf veins. This is damaging to young seedlings and may disrupt head formation in cabbage, broccoli, and cauliflower. The presence of larvae in florets can result in complete rejection of the produce. The diamondback moth is considered a pest in areas that do not experience very cold winters, as these help to reduce adult activity and kill off overwintering moths. [18] [11] It is considered an especially significant issue in China, as it has been argued that Chinese cabbage represents the country's most significant vegetable crop. [19]

Pesticide resistance

The diamondback's lack of natural enemies, such as parasitoids, may be accounted for by the widespread use of insecticides in the 1950s. [19] The diamondback was not recognized as DDT-resistant until 1953, and broad-spectrum use of insecticides did not begin until the late 1940s. [19] By the 1980s, resistance [20] to pyrethroids had developed. Limiting broad spectrum insecticide use and particularly elimination of pyrethroid use, can increase survival and propagation of diamondback parasitoids, Microplitis plutellae, Diadegma insulare , and Diadromus subtilicornis. [1]

The diamondback moth was the first insect found to have become resistant to biological control by the Bt toxin (from Bacillus thuringiensis ) in the field. Bt toxin is poisonous when ingested by insects but not mammals, so it was used to target low infestation levels of the moth. [11] Research has shown that the diamondback moth has an autosomal ressessive gene that provides resistance to four specific types of B. thuringiensis (Cry1Aa, Cry1Ab, Cry1Ac, and Cry1F). [21] Trichoplusia ni (cabbage looper) is the only other insect to have developed resistance to Bt toxin in agricultural systems, specifically in greenhouses. [22] [23]

Other controls

Rainfall and irrigation can kill larvae. [11] The cultural practice of intercropping in China could serve to reduce the number of diamondback larvae on cruciferous plants. However, it does not always lead to a reduction of the damage. [1] It has been suggested that sex pheromones and host odors could be manipulated to attract and trap diamondback moths as a means of chemical management. [24]

Climate effects

Seasonal temperature changes lead to differences in body size of the diamondback moths. Warmer temperatures lead to smaller bodies whereas colder temperatures lead to the development of larger bodies. The larger moths have a greater flight ability, longevity, and reproductive performance when compared to the smaller moths. Therefore, long-distance migration tends to occur in the spring rather than midsummer as a greater number of large moths are available and capable of flying. [25]

Integrated pest control

Potential cultural practices

Firstly, inter-cropping is good for reducing pests. Because of the biological diversity, two or more crops can be planted in one field, which can reduce fertilization or pesticide use, making planting the most profitable, and producing higher quality cabbage or increasing yield. High and low growing Trifolium pratense was used to inter-plant cabbage and compared with cabbage alone. It was concluded that only inter-cropping with the high-growing red clover could reduce the number of eggs produced by the diamondback moth. [26]

Secondly, planting time can be considered, because pest populations are affected by seasonal factors. For example, during wet periods, the infection rate of the diamondback moth is very low. As a result, growing cruciferous plants during wet seasons can effectively reduce pesticide use. Thirdly, crop rotation could be used; cruciferous vegetables can be rotated with melons, fruits, onions and garlic resulting in a break in the food chain of the diamondback moth generations. In addition, maintaining clean cabbage field hygiene is a simple but important pest control and prevention measure. A clean growing environment can greatly reduce the likelihood of infection. Before farming, for example, the soil can be ploughed and exposed to the sun for at least a week. This helps to clear the diamondback moth and strengthen the quality of the soil. [27]

Potential physical and mechanical practices

Blue-light traps can catch a lot of adult diamondback worms.[adult worms? Clarify?] Setting up a trap on top of the cabbage can effectively slow the encroachment of the resistant diamondback moth. [28]

Potential biological control options

1. Introduction of natural enemies which feed on the larvae, thereby reducing numbers. Although they usually only have a noticeable effect in the later stages of crop growth and can kill up to 70% of their prey. [29] Wasps and spiders are considered common predators. [30] The introduction of natural predators can be one of the most effective ways of both stabilizing ecosystems and managing pests. [31]

2. The homologous gene of Plutella xylostella was knocked out i.e. changed. This is a genetically-based approach that requires precise research to identify suitable genetic targets. Using the CRISPR/Cas9 system as a targeted gene to identify the abdominal segment, thus removing the harmful homologous gene (gene for cruciferous preference) in the diamondback moth. [32] Field trials conducted by the UK biotechnology company Oxitec, released between 1,000 and 2,500 genetically modified males to a crop in New York state, during August and September 2017 on six occasions. When the male GM moths mated with wild females all the resulting female larvae died. Following pupation of the male larvae, the moths passed on their lethal gene to their offspring, with about half of GM males dying in each generation, resulting in the gene disappearing in a few years and not persisting in the wild. [33]

Potential chemical control options

The method of chemical control is to use pesticides to prevent damage to cabbage fields when larva populations exceed economic thresholds. The pests are controlled during the germination period, and the crops ripen quickly, so the diamondback moth doesn't grow in large numbers. It is more effective to apply insecticide when larval population is high. Since pesticides are difficult to kill larvae and pupae, sufficient pesticides must be used. Make sure there is adequate coverage. The diamondback moth is most active at dusk or at night, when the insecticide is most effective. In addition, avoiding coverage of flowering crops can minimize damage to bees and other pollinated insects. [34] Ntonifor et al 2002 finds Piper guineense extract to be highly effective in Brassica crops. [35] :41

Related Research Articles

<i>Helicoverpa zea</i> Species of moth

Helicoverpa zea, commonly known as the corn earworm, is a species in the family Noctuidae. The larva of the moth Helicoverpa zea is a major agricultural pest. Since it is polyphagous during the larval stage, the species has been given many different common names, including the cotton bollworm and the tomato fruitworm. It also consumes a wide variety of other crops.

<i>Pieris rapae</i> Species of butterfly

Pieris rapae is a small- to medium-sized butterfly species of the whites-and-yellows family Pieridae. It is known in Europe as the small white, in North America as the cabbage white or cabbage butterfly, on several continents as the small cabbage white, and in New Zealand as the white butterfly. The butterfly is recognizable by its white color with small black dots on its wings, and it can be distinguished from P. brassicae by its larger size and the black band at the tip of its forewings.

The term cabbage worm is primarily used for any of four kinds of lepidopteran whose larvae feed on cabbages and other cole crops. Favorite foods include broccoli, cauliflower, Brussels sprouts, collards, kale, mustard greens, turnip greens, radishes, turnips, rutabagas and kohlrabi. This small group of similar pest species is known to agriculturists as the cabbage worm compte butterflies.

<span class="mw-page-title-main">Cabbage moth</span> Species of moth

The cabbage moth is primarily known as a pest that is responsible for severe crop damage of a wide variety of plant species. The common name, cabbage moth, is a misnomer as the species feeds on many fruits, vegetables, and crops in the genus Brassica. Other notable host plants include tobacco, sunflower, and tomato, making this pest species particularly economically damaging.

<span class="mw-page-title-main">Cabbage looper</span> Species of moth

The cabbage looper is a medium-sized moth in the family Noctuidae, a family commonly referred to as owlet moths. Its common name comes from its preferred host plants and distinctive crawling behavior. Cruciferous vegetables, such as cabbage, bok choy, and broccoli, are its main host plant; hence, the reference to cabbage in its common name. The larva is called a looper because it arches its back into a loop when it crawls.

<i>Phthorimaea operculella</i> Species of moth

Phthorimaea operculella, also known as the potato tuber moth or tobacco splitworm, is a moth of the family Gelechiidae. It is an oligophagous insect that feeds on the plant family Solanaceae and is especially known for being a major pest of potato crops. Currently farmers utilize insecticides, parasites, and sprinkler irrigation in order to prevent P. operculella from infesting their croplands.

<i>Delia</i> (fly) Genus of flies

Delia flies are members of the Anthomyiidae family within the superfamily Muscoidae. The identification of different species of Delia can be very difficult for non-specialists as the diagnostic characteristics used for immature and/or female specimens may be inconsistent between species. Past taxonomic keys were not as comprehensive in their identification of Delia specimens; they were either too reliant on genetic characteristics, focused solely on a specific life stage, or were focused only on certain species. However current taxonomic keys aim to be more thorough by not only including morphological diagnostics for males, females, and immature specimens of various species, but also their genetic make-up or molecular barcode.

<span class="mw-page-title-main">European corn borer</span> Species of moth

The European corn borer, also known as the European corn worm or European high-flyer, is a moth of the family Crambidae. It is a pest of grain, particularly maize. The insect is native to Europe, originally infesting varieties of millet, including broom corn. The European corn borer was first reported in North America in 1917 in Massachusetts, but was probably introduced from Europe several years earlier. Since its initial discovery in the Americas, the insect has spread into Canada and westwards across the United States to the Rocky Mountains.

<i>Spodoptera litura</i> Species of moth

Spodoptera litura, otherwise known as the tobacco cutworm or cotton leafworm, is a nocturnal moth in the family Noctuidae. S. litura is a serious polyphagous pest in Asia, Oceania, and the Indian subcontinent that was first described by Johan Christian Fabricius in 1775. Its common names reference two of the most frequent host plants of the moth. In total, 87 species of host plants that are infested by S. litura are of economic importance. The species parasitize the plants through the larvae vigorous eating patterns, oftentimes leaving the leaves completely destroyed. The moth's effects are quite disastrous, destroying economically important agricultural crops and decreasing yield in some plants completely. Their potential impact on the many different cultivated crops, and subsequently the local agricultural economy, has led to serious efforts to control the pests.

<span class="mw-page-title-main">Leek moth</span> Species of moth

The leek moth or onion leaf miner is a species of moth of family Acrolepiidae and the genus Acrolepiopsis. The species is native to Europe and Siberia, but is also found in North America, where it is an invasive species. While it was initially recorded in Hawaii, this was actually a misidentification of Acrolepiopsis sapporensis.

<i>Agrotis ipsilon</i> Species of moth

Agrotis ipsilon, the dark sword-grass, black cutworm, greasy cutworm, floodplain cutworm or ipsilon dart, is a small noctuid moth found worldwide. The moth gets its scientific name from black markings on its forewings shaped like the letter "Y" or the Greek letter upsilon. The larvae are known as "cutworms" because they cut plants and other crops. The larvae are serious agricultural pests and feed on nearly all varieties of vegetables and many important grains.

<i>Spodoptera littoralis</i> Species of moth

Spodoptera littoralis, also referred to as the African cotton leafworm or Egyptian cotton leafworm or Mediterranean brocade, is a species of moth in the family Noctuidae. S. littoralis is found widely in Africa, Mediterranean Europe and Middle Eastern countries. It is a highly polyphagous organism that is a pest of many cultivated plants and crops. As a result, this species was assigned the label of A2 quarantine pest by the EPPO and was cautioned as a highly invasive species in the United States. The devastating impacts caused by these pests have led to the development of both biological and chemical control methods. This moth is often confused with Spodoptera litura.

<i>Leuroperna sera</i> Species of moth

Leuroperna sera is a moth of the family Plutellidae first described by Edward Meyrick in 1885. It is found in Japan, Taiwan, Vietnam, Indonesia, India, Sri Lanka, Australia, and New Zealand.

<i>Chloridea virescens</i> Species of moth

Chloridea virescens, commonly known as the tobacco budworm, is a moth of the family Noctuidae found throughout the eastern and southwestern United States along with parts of Central America and South America.

<i>Helicoverpa assulta</i> Species of moth

Helicoverpa assulta, the oriental tobacco budworm, is a moth of the family Noctuidae. H. assulta adults are migratory and are found all over the Old World Tropics including Asia, Africa, and Australia.

<i>Crocidolomia pavonana</i> Species of moth

Crocidolomia pavonana is a moth of the family Crambidae. Its caterpillar is a crop pest and is known as the croci or the cabbage cluster caterpillar. This moth is found in Africa and Asia, its range extending from South Africa through India to the Pacific Ocean, including Australia. The wingspan is about 25 mm (1 in). The larvae feed on Brassicaceae species and are considered an agricultural pest on cabbages. At first, they feed only on the undersides of the leaves. Later they feed on the rest of the leaves and the central shoot. The species was first described by Johan Christian Fabricius in 1794.

<i>Plutella australiana</i> Species of moth

Plutella australiana is a moth of the family Plutellidae. It is found in eastern Australia.

<i>Scaptomyza flava</i> Species of fly

Scaptomyza flava is an herbivorous leaf mining fly species in the family Drosophilidae. In Latin, flava means golden or yellow. The fly is amber to dark brown in color and approximately 2.5 mm in length. In Europe and New Zealand the larvae are pests of plants in the order Brassicales, including arugula, brassicas, broccoli, Brussels sprouts, bok choy, cabbage, canola, cauliflower, horseradish, kale, kohlrabi, napa cabbage, nasturtium, radish, rapini, rutabaga, turnip, wasabi and watercress. In New Zealand, its range has expanded to include host species that are intercropped with salad brassicas, including gypsophila, otherwise known as baby's breath, which is in the pink family (Caryophyllaceae) and the pea in the Fabaceae. More typically, S. flava is oligophagous within the Brassicales. Scaptomyza are unusual within the Drospophilidae because the group includes species that are truly herbivorous. Other herbivorous drosophilids include D. suzukii, which attacks fruit very early during ripening and species within the genus Lordiphosa, from Africa and Asia, which also include leaf miners. Most drosophilids feed on microbes associated with decaying vegetation and sap fluxes.

<i>Diadegma semiclausum</i> Species of parasitic wasp

Diadegma semiclausum is a species of parasitic wasp in the family Ichneumonidae. Its larvae are parasites of the larvae of the diamondback moth and certain other moths.

References

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Capinera, John L. "University of Florida".
  2. 1 2 3 4 5 6 7 AgroAtlas
  3. 1 2 Wei, Shu-Jun; Shi, Bao-Cai; Gong, Ya-Jun; Jin, Gui-Hua; Chen, Xue-Xin; Meng, Xiang-Feng (2013). "Genetic Structure and Demographic History Reveal Migration of the Diamondback Moth Plutella xylostella (Lepidoptera: Plutellidae) from the Southern to Northern Regions of China". PLOS ONE. 8 (4): e59654. Bibcode:2013PLoSO...859654W. doi: 10.1371/journal.pone.0059654 . PMC   3614937 . PMID   23565158.
  4. 1 2 3 N. S. Talekar; A. M. Shelton (1993). "Biology, ecology and management of the diamondback moth". Annual Review of Entomology . 38: 275–301. doi:10.1146/annurev.en.38.010193.001423.
  5. F. R. Badenes-Perez; B. A. Nault; A.M. Shelton (2006). "Dynamics of diamondback moth oviposition in the presence of a highly preferred non-suitable host". Entomologia Experimentalis et Applicata . 120 (1): 23–31. doi:10.1111/j.1570-7458.2006.00416.x. S2CID   5985701.
  6. 1 2 3 4 5 6 7 Wee, Suk Ling (2016). "Effects of Conspecific Herbivory and Mating Status on Host Searching and Oviposition Behavior of Plutella xylostella (Lepidoptera: Plutellidae) in Relation to Its Host, Brassica oleracea (Brassicales: Brassicaceae)". Florida Entomologist. 99 (sp1): 159–165. doi: 10.1653/024.099.sp119 .
  7. Hoare, Robert J. B. (2014). A photographic guide to moths & butterflies of New Zealand. Olivier Ball. Auckland. p. 25. ISBN   978-1-86966-399-5. OCLC   891672034.{{cite book}}: CS1 maint: location missing publisher (link)
  8. 1 2 3 Justus, K. A.; Mitchell, B. K. (November 1996). "Oviposition site selection by the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae)". Journal of Insect Behavior. 9 (6): 887–898. doi:10.1007/BF02208976. S2CID   28455636.
  9. 1 2 Badenes-Pérez, Francisco Rubén; Reichelt, Michael; Gershenzon, Jonathan; Heckel, David G. (2011). "Phylloplane location of glucosinolates in Barbarea spp. (Brassicaceae) and misleading assessment of host suitability by a specialist herbivore". New Phytologist. 189 (2): 549–556. doi: 10.1111/j.1469-8137.2010.03486.x . ISSN   0028-646X. PMID   21029103.
  10. Shinoda, Tetsuro; Nagao, Tsuneatsu; Nakayama, Masayoshi; Serizawa, Hiroaki; Koshioka, Masaji; Okabe, Hikaru; Kawai, Akira (2002). "Identification of a triterpenoid saponin from a crucifer, Barbarea vulgaris, as a feeding deterrent to the diamondback moth, Plutella xylostella". Journal of Chemical Ecology. 28 (3): 587–99. doi:10.1023/A:1014500330510. PMID   11944835. S2CID   1539329.
  11. 1 2 3 4 5 6 Oklahoma State University
  12. 1 2 Zhu, Jiao; Ban, Liping; Song, Li-Mei; Liu, Yang; Pelosi, Paolo; Wang, Guirong (2016). "General odorant-binding proteins and sex pheromone guide larvae of Plutella xylostella to better food". Insect Biochemistry and Molecular Biology. 72: 10–19. doi:10.1016/j.ibmb.2016.03.005. PMID   27001069.
  13. 1 2 "Plutella xylostella (diamondback moth)". CABI. Retrieved 2 October 2017.
  14. Reddy, G.V.P.; Holoopainen, J.K.; Guerrero, A. (January 2002). "Olfactory Responses of Plutella xylostella Natural Enemies to Host Pheromone, Larval Frass, and Green Leaf Cabbage Volatiles". Journal of Chemical Ecology. 28 (1): 131–143. doi:10.1023/A:1013519003944. PMID   11871395. S2CID   22650385.
  15. He, Peng (2017). "A reference gene set for sex pheromone biosynthesis and degradation genes from the diamondback moth, Plutella xylostella, based on genome and transcriptome digital gene expression analyses". BMC Genomics. 18 (1): 219. doi: 10.1186/s12864-017-3592-y . PMC   5333385 . PMID   28249567.
  16. Zhang, Wei; Zhao, Fei; Hoffmann, Ary A.; Ma, Chun-Sen (2013). "A Single Hot Event That Does Not Affect Survival but Decreases Reproduction in the Diamondback Moth, Plutella xylostella". PLOS ONE. 8 (10): e75923. Bibcode:2013PLoSO...875923Z. doi: 10.1371/journal.pone.0075923 . PMC   3793006 . PMID   24116081.
  17. 1 2 Wang, X.-P.; Fang, Y.-L.; Zhang, Z.-N. (13 January 2005). "Effect of male and female multiple mating on the fecundity, fertility, and longevity of diamondback moth, Plutella xylostella (L.)". Journal of Applied Entomology. 129 (1): 39–42. doi:10.1111/j.1439-0418.2005.00931.x. S2CID   86511435.
  18. N. S. Talekar; A. M. Shelton (1993). "Biology, ecology and management of the diamondback moth". Annual Review of Entomology . 38: 275–301. doi:10.1146/annurev.en.38.010193.001423.
  19. 1 2 3 N S Talekar; Shelton, and A. M. (1993). "Biology, Ecology, and Management of the Diamondback Moth". Annual Review of Entomology. 38 (1): 275–301. doi:10.1146/annurev.en.38.010193.001423.
  20. Leibee, Gary L.; Savage, Kenneth E. (1992). "Evaluation of Selected Insecticides for Control of Diamondback Moth and Cabbage Looper in Cabbage in Central Florida with Observations on Insecticide Resistance in the Diamondback Moth". The Florida Entomologist. 75 (4): 585. doi:10.2307/3496140. ISSN   0015-4040. JSTOR   3496140.
  21. Tabashnik, Bruce E.; Liu, Y.-B; Finson, N; Masson, L; Heckel, D.G. (1997). "One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins". Proceedings of the National Academy of Sciences of the United States of America. 94 (5): 1640–1644. Bibcode:1997PNAS...94.1640T. doi: 10.1073/pnas.94.5.1640 . PMC   19969 . PMID   9050831.
  22. A. F. Janmaat; J. Myers (2003). "Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni". Proceedings of the Royal Society B . 270 (1530): 2263–2270. doi:10.1098/rspb.2003.2497. PMC   1691497 . PMID   14613613.
  23. P. Wang; J. Z. Zhao; A. Rodrigo-Simon; W. Kain; A. F. Janmaat; A. M. Shelton; J. Ferre; J. Myers (2006). "Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of cabbage looper, Trichoplusia ni". Applied and Environmental Microbiology . 73 (4): 1199–207. doi:10.1128/AEM.01834-06. PMC   1828666 . PMID   17189446.
  24. Wee, Suk Ling (2016). "Effects of Conspecific Herbivory and Mating Status on Host Searching and Oviposition Behavior of Plutella xylostella (Lepidoptera: Plutellidae) in Relation to Its Host, Brassica oleracea (Brassicales: Brassicaceae)". Florida Entomologist. 99 (sp1): 159–165. doi: 10.1653/024.099.sp119 .
  25. Shirai, Yoichi (December 1995). "Longevity, flight ability and reproductive performance of the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Yponomeutidae), related to adult body size". Researches on Population Ecology. 37 (2): 269–277. doi:10.1007/BF02515829. S2CID   25864583.
  26. Hermansson, Joakim (2016). "Biology of the Diamondback moth (Plutella xylostella) and its future impact in Swedish oilseed rape production – a literature review". Swedish University of Agricultural Sciences: 16–17.
  27. Guan-Soon, Lim (1992). "Integrated Pest Management of Diamondback Moth: Practical Realities". DBM IPM Practicality: 565–576.
  28. Country review paper: Thailand. Informal Expert Consultation on IPM in Major Vegetable Crops in Asia.
  29. Country review paper: Vietnam. Informal Expert Consultation on IPM in Major Vegetable Crops in Asia.
  30. "Advances in biological control of diamondback moth in Malaysia". Regional Workshop on Pest Management of Vegetables. 1990.
  31. Yamada, Hideo; Yamaguchi, Taiji (1985). "Notes on the parasites and predators attacking the diamondback moth, Plutella xylostella (L.)". Japanese Journal of Applied Entomology and Zoology. 29 (2): 170–173. doi: 10.1303/jjaez.29.170 .
  32. "CRISPR/Cas9 mediated knockout of abdominal- A homeotic gene in the global pest, diamondback moth (plutella xylostella)". Insect Biochemistry and Molecular Biology. 2016.
  33. Le Page, Michael (8 February 2020). "Modified moths head into the field". New Scientist. No. 3268. p. 18.
  34. Crop Protection. Alberta Ministry of Agriculture. 2018. pp. 385–440. Agdex 606-1.
  35. Rodolfo Juliani, H.; Simon, James E.; Ho, Chi-Tang, eds. (2009). African natural plant products. ACS Symposium Series. Vol. 1127. Washington, DC New York City: American Chemical Society (Distributed by Oxford University Press). pp. xii+333. doi:10.1021/BK-2013-1127. ISBN   978-0-8412-2804-7. OCLC   430736504. S2CID   89394800. ISBN   978-0-8412-2805-4. OCLC   860903530.
  1. p. 518, "DBM DISTRIBUTION, CURRENT MANAGEMENT, AND ECONOMIC COSTS Despite the pest status of DBM and assertions that it has the most extensive distribution of all Lepidoptera (168), current understanding of its global distribution and relative abundance is limited (187). The original distribution map (25) is a composite of incomplete distribution records, and this has recently been superseded by a version that simply records countries where DBM has been reported (16)."
  2. p. 518, "Despite these advances, DBM has retained its status as the most destructive member of the different insect pest complexes that attack Brassica vegetable crops in various parts of the world (34, 147, 155, 161, 165, 167), and it is increasingly considered a significant, if sporadic, threat to canola production (45)."