A solar power tower, also known as 'central tower' power plant or 'heliostat' power plant, is a type of solar furnace using a tower to receive focused sunlight. It uses an array of flat, movable mirrors (called heliostats) to focus the sun's rays upon a collector tower (the target). Concentrating Solar Power (CSP) systems are seen as one viable solution for renewable, pollution-free energy. [1]
Early designs used these focused rays to heat water and used the resulting steam to power a turbine. Newer designs using liquid sodium have been demonstrated, and systems using molten salts (40% potassium nitrate, 60% sodium nitrate) as the working fluids are now in operation. These working fluids have high heat capacity, which can be used to store the energy before using it to boil water to drive turbines. Storing the heat energy for later recovery allows power to be generated continuously, while the sun is shining, and for several hours after the sun has set (or been clouded over).
This section needs to be updated.(December 2020) |
In 2021, the US National Renewable Energy Laboratory (NREL) estimated the cost of electricity from concentrated solar with 10 hours of storage at $0.076 per kWh in 2021, $0.056 per kWh in 2030, and $0.052 per kWh in 2050. [2] In 2007, companies such as ESolar (then backed by Google.org) were developing cheap, low maintenance, mass producible heliostat components that were to reduce costs in the near future. [3] ESolar's design used large numbers of small mirrors (1.14 m2), to reduce costs for installing mounting systems such as concrete, steel, drilling, and cranes. In October 2017, an article in GreenTech Media suggested that eSolar ceased business in late 2016. [4]
Improvements in working fluid systems, such as moving from current two tank (hot/cold) designs to single tank thermocline systems with quartzite thermal fillers and oxygen blankets will improve material efficiency and reduce costs further.
Generally, installations use from 150 hectares (1,500,000 m2) to 320 hectares (3,200,000 m2).
In 2023, Australia’s national science agency CSIRO tested a CSP arrangement in which tiny ceramic particles fall through the beam of concentrated solar energy, the ceramic particles capable of storing a greater amount of heat than molten salt, while not requiring a container that would diminish heat transfer. [6]
There is evidence that such large area solar concentrating installations can burn birds that fly over them. Near the center of the array, temperatures can reach 550 °C which, with the solar flux itself, is enough to incinerate birds. More distant birds’ feathers can be scorched, leading to the eventual death of the bird. Ivanpah reported one bird scorching in every two minutes. Workers at the Ivanpah solar power plant call these birds "streamers," as they ignite in midair and plummet to the ground trailing smoke. During testing of the initial standby position for the heliostats, 115 birds were killed as they entered the concentrated solar flux. During the first 6 months of operations, a total of 321 birds were killed. After altering the standby procedure to focus no more than four heliostats on any one point, there have been no further bird fatalities. [7]
The Ivanpah Solar Power Facility is classified as a greenhouse gas emitter by the State of California because it has to burn fossil fuel for several hours each morning so that it can quickly reach its operating temperature. [8]
Several companies have been involved in planning, designing, and building utility size power plants. There are numerous examples of case studies of applying innovative solutions to solar power. Beam-down (a variation of central receiver plants with Cassegrainian optics [9] )[ clarification needed ] tower application is also feasible with heliostats to heat the working fluid. [10] This concept is an attarctive choice for reducing the height of the system and leading to a simplier design, by moving the absorber close to the ground. [11]
The Pit Power Tower [12] [13] combines a solar power tower and an aero-electric power tower [14] in a decommissioned open pit mine. Traditional solar power towers are constrained in size by the height of the tower and closer heliostats blocking the line of sight of outer heliostats to the receiver. The use of the pit mine's "stadium seating" helps overcome the blocking constraint.
As solar power towers commonly use steam to drive the turbines, and water tends to be scarce in regions with high solar energy, another advantage of open pits is that they tend to collect water, having been dug below the water table. The Pit Power Tower uses low heat steam to drive the pneumatic tubes in a co-generation system. A third benefit of re-purposing a pit mine for this kind of project is the possibility of reusing mine infrastructure such as roads, buildings, and electricity.
Name | Developer/Owner | Completed | Country | Town | Height m | Height ft | Collectors | Installed maximum capacity *(MW) | Yearly total energy production (GWh) |
---|---|---|---|---|---|---|---|---|---|
Noor Energy 1 | ACWA Power | 2022 | United Arab Emirates | Saih Al-Dahal, Dubai | 262.44 m | 861 ft | |||
Ashalim Power Station | Megalim Solar Power | 2019 | Israel | Negev Desert | 260 m | 853 ft | 50,600 | 121 MW | 320 |
Ouarzazate Solar Power Station | Moroccan Agency for Sustainable Energy | 2019 | Morocco | Ouarzazate | 250 m | 820 ft | 7,400 | 150 MW | 500 |
Cerro Dominador Solar Thermal Plant [15] | Acciona (51%) and Abengoa (49%) | 2021 | Chile | Calama | 250 m | 820 ft | 10,600 | 110 MW | |
Redstone Solar Thermal Power | ACWA Power | 2023 | South Africa | Postmasburg, Northern Cape Province | 100 MW [16] | ||||
Shouhang Dunhuang 100 MW Phase II [17] | Beijing Shouhang IHW | 2018 | China | Dunhuang | 220 m | 722 ft | 12,000 | 100 MW | 390 [18] |
Qinghai Gonghe CSP [19] | 2019 | China | Gonghe | 210 m | 689 ft | 50 MW | 156.9 | ||
Khi Solar One | Abengoa | 2016 | South Africa | Upington | 205 m | 673 ft | 4,120 | 50 MW | 180 |
Crescent Dunes Solar Energy Project | SolarReserve | 2016 | United States | Tonopah | 200 m | 656 ft | 10,347 | 110 MW | 500 |
Supcon Solar Delingha [20] | Supcon Solar | 2016 | China | Delingha | 200 m | 656 ft | 50 MW | 146 | |
Haixi 50 MW CSP Project [21] | Luneng Qinghai Guangheng New Energy | 2019 | China | Haixi Zhou | 188 m | 617 ft | 4,400 | 50 MW | |
Hami 50 MW CSP Project [22] [23] | Supcon Solar | 2019 | China | Hami | 180 m | 590 ft | 50 MW | ||
PS20 solar power plant | Abengoa Solar | 2009 | Spain | Sanlúcar la Mayor | 165 m | 541 ft | 1,255 | 20 MW | 48 |
Gemasolar Thermosolar Plant | Torresol Energy | 2011 | Spain | Sevilla | 140 m | 460 ft | 2,650 | 19.9 MW | 80 |
Ivanpah Solar Power Facility (3 towers) | BrightSource Energy | 2014 | United States | Mojave Desert | 139.9 m | 459 ft | 173,500 | 392 MW | 650 |
Shouhang Dunhuang 10 MW Phase I [24] | 2018 | China | Dunhuang | 138 m | 453 ft | 1,525 [25] | 10 MW | ||
Sundrop Farms | Aalborg CSP | 2016 | Australia | Port Augusta | 127 m | 417 ft | 23,712 [26] | 1.5 MW | |
Dahan Power Plant [27] | Institute of Electrical Engineering of Chinese Academy of Sciences | 2012 | China | Dahan | 118 m | 387 ft | 100 | 1 MW | |
PS10 solar power plant | Abengoa Solar | 2007 | Spain | Sanlúcar la Mayor | 115 m | 377 ft | 624 | 11 MW | 23.4 |
The Solar Project | U.S. Department of Energy | 1981 | United States | Mojave Desert | 100 m | 328 ft | 1,818 later 1,926 | 7 MW, later 10 MW | na, demolished |
Supcon Solar Delingha 10MW [28] (2 towers) | Supcon Solar | 2013 | China | Delingha | 100 m | 328 ft | 10 MW | ||
National Solar Thermal Test Facility | U.S. Department of Energy | 1978 | United States | Albuquerque, New Mexico | 60 m | 200 ft | 1 MW (5-6 MWt) | na, demonstrator | |
Jülich Solar Tower | German Aerospace Center | 2008 | Germany | Jülich | 60 m | 200 ft | 2000 | 1.5 MW | na, demonstrator |
Greenway CSP Mersin Solar Tower | Greenway CSP | 2013 | Turkey | Mersin | 60 m | 200 ft | 510 | 1 MW (5 MWt) | |
ACME Solar Tower [29] | ACME Group | 2011 | India | Bikaner | 46 m | 150 ft | 14,280 | 2.5 MW | |
Sierra SunTower (2 towers) | eSolar | 2010 | United States | Mojave Desert | 46 m | 150 ft [30] | 24,000 | 5 MW | na, demolished |
Jemalong CSP Pilot Plant [31] | 2017 | Australia | Jemalong | 5x 27 m | 5x 89 ft | 3,500 | 1.1 MW (6 MWt) |
Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors. Solar thermal collectors are classified by the United States Energy Information Administration as low-, medium-, or high-temperature collectors. Low-temperature collectors are generally unglazed and used to heat swimming pools or to heat ventilation air. Medium-temperature collectors are also usually flat plates but are used for heating water or air for residential and commercial use.
The SOLAR Project consists of the Solar One, Solar Two and Solar Tres solar thermal power plants based in the Mojave Desert, United States and Andalucía, Spain. The US Department of Energy (DOE) and a consortium of US utilities built the country's first two large-scale, demonstration solar power towers in the desert near Barstow, California.
Gemasolar is a concentrated solar power plant with a molten salt heat storage system. It is located within the city limits of Fuentes de Andalucía in the province of Seville, Spain.
There are several solar power plants in the Mojave Desert which supply power to the electricity grid. Insolation in the Mojave Desert is among the best available in the United States, and some significant population centers are located in the area. These plants can generally be built in a few years because solar plants are built almost entirely with modular, readily available materials. Solar Energy Generating Systems (SEGS) is the name given to nine solar power plants in the Mojave Desert which were built in the 1980s, the first commercial solar plant. These plants have a combined capacity of 354 megawatts (MW) which made them the largest solar power installation in the world, until Ivanpah Solar Power Facility was finished in 2014.
Spain is one of the first countries to deploy large-scale solar photovoltaics, and is the world leader in concentrated solar power (CSP) production.
The PS10 Solar Power Plant, is the world's first commercial concentrating solar power tower operating near Seville, in Andalusia, Spain. The 11 megawatt (MW) solar power tower produces electricity with 624 large movable mirrors called heliostats. It took four years to build and so far has cost €35 million (US$46 million). PS10 produces about 23,400 megawatt-hours (MW·h) per year, for which it receives €271 (US$360) per MW·h under its power purchase agreement, equating to a revenue of €6.3 million per year.
The Solana Generating Station is a solar power plant near Gila Bend, Arizona, about 70 miles (110 km) southwest of Phoenix. It was completed in 2013. When commissioned, it was the largest parabolic trough plant in the world, and the first U.S. solar plant with molten salt thermal energy storage. Built by the Spanish company Abengoa Solar, the project can produce up to 280 megawatts (MW) gross, supplied by two 140 MW gross (125 MW net) steam turbine generators: enough electricity to meet the needs of approximately 70,000 homes and obviate the emission of roughly 475,000 tons of CO2 every year. Its name is the Spanish term for "sunny spot".
The PS20 solar power plant (PS20) solar power plant is a solar thermal energy plant in Sanlucar la Mayor near Seville in Andalusia, Spain. It was the world's most powerful solar power tower until the Ivanpah Solar Power Facility in California became operational in 2014. The 20 megawatt (MW) solar power tower produces electricity with large movable mirrors called heliostats.
Concentrated solar power systems generate solar power by using mirrors or lenses to concentrate a large area of sunlight into a receiver. Electricity is generated when the concentrated light is converted to heat, which drives a heat engine connected to an electrical power generator or powers a thermochemical reaction.
SolarReserve was a developer of utility-scale solar power projects which include Concentrated Solar Power (CSP) and Photovoltaic (PV) technology. The company has commercialized solar thermal energy storage technology that enables solar power tower CSP plants to deliver electricity day and night. In this technology, a molten salt is used to capture the energy from the sun and store it. When electricity is needed, the stored liquid salt is used to turn water into steam to turn a turbine and generate electricity.
Torresol Energy is a company dedicated to developing renewable energy and alternative energies, focusing on concentrated solar energy. It is based in the city of Getxo in Biscay Province (Vizcaya), in the Basque Country of northern Spain.
eSolar is a privately held company that develops concentrating solar power (CSP) plant technology. The company was founded by the Pasadena-based business incubator Idealab in 2007 as a developer of CSP plant technology. The company aims to develop a low cost alternative to fossil fuels through a combination of small heliostats, modular architecture, and a high-precision sun-tracking system. In October 2017, an article in GreenTech Media suggested that eSolar ceased business in late 2016.
A compact linear Fresnel reflector (CLFR) – also referred to as a concentrating linear Fresnel reflector – is a specific type of linear Fresnel reflector (LFR) technology. They are named for their similarity to a Fresnel lens, in which many small, thin lens fragments are combined to simulate a much thicker simple lens. These mirrors are capable of concentrating the sun's energy to approximately 30 times its normal intensity.
The Ivanpah Solar Electric Generating System is a concentrated solar thermal plant in the Mojave Desert. It is located at the base of Clark Mountain in California, across the state line from Primm, Nevada. The plant has a gross capacity of 392 megawatts (MW). It uses 173,500 heliostats, each with two mirrors focusing solar energy on boilers located on three 459 feet (140 m) tall solar power towers. The first unit of the system was connected to the electrical grid in September 2013 for an initial synchronisation test. The facility formally opened on February 13, 2014. In 2014, it was the world's largest solar thermal power station.
Sierra SunTower was a 5 MW commercial concentrating solar power (CSP) plant built and operated by eSolar. The plant is located in Lancaster, California. As of mid-September, 2022, the two towers that were the center of the facility are no longer standing. However the rest of the plant is still present.
Solar power is an important contributor to electricity generation in Italy, accounting for 8% of the total in 2017. As of 2022, the country has a total installed capacity of 22.56 GW. In 2019, Italy set a national goal of reaching 50 GW by 2030.
The Crescent Dunes Solar Energy Project is a solar thermal power project with an installed capacity of 110 megawatt (MW) and 1.1 gigawatt-hours of energy storage located near Tonopah, about 190 miles (310 km) northwest of Las Vegas. Crescent Dunes is the first commercial concentrated solar power (CSP) plant with a central receiver tower and advanced molten salt energy storage technology at full scale, following the experimental Solar Two and Gemasolar in Spain at 50 MW. As of 2023, it is operated by its new owner; ACS, and in a new contract with NV Energy, it now supplies solar energy at night only, drawing on thermal energy stored each day.
Ouarzazate Solar Power Station (OSPS), also called Noor Power Station is a solar power complex and auxiliary diesel fuel system located in the Drâa-Tafilalet region in Morocco, 10 kilometres (6.2 mi) from Ouarzazate town, in Ghessat rural council area. At 510 MW, it is the world's largest concentrated solar power (CSP) plant. With an additional 72 MW photovoltaic system the entire project was planned to produce 582 MW. The total project's estimated cost is around $9 billion.
Cerro Dominador Solar Power Plant is a 210-megawatt (MW) combined concentrated solar power and photovoltaic plant located in the commune of María Elena in the Antofagasta Region of Chile, about 24 kilometres (15 mi) west-northwest of Sierra Gorda. The project was approved by the Chilean government in 2013 and construction was started by Abengoa Solar Chile, a branch of the multinational Abengoa Spain. The plant was inaugurated on June 8, 2021. A follow-up project called Likana Solar bid $33.99/MWh in an auction in August 2021.