Solar water heating

Last updated
Solar water collectors installed in Spain Water collectors.jpg
Solar water collectors installed in Spain

Solar water heating (SWH) is heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for residential and some industrial applications. [1] [2]

Contents

A Sun-facing collector heats a working fluid that passes into a storage system for later use. SWH are active (pumped) and passive (convection-driven). They use water only, or both water and a working fluid. They are heated directly or via light-concentrating mirrors. They operate independently or as hybrids with electric or gas heaters. [3] In large-scale installations, mirrors may concentrate sunlight into a smaller collector.[ original research? ]

As of 2017, global solar hot water (SHW) thermal capacity is 472 GW and the market is dominated by China, the United States and Turkey. [4] Barbados, Austria, Cyprus, Israel and Greece are the leading countries by capacity per person. [4]

History

An advertisement for a Solar Water Heater dating to 1902 Out west (1902) - Solar water heater advert.jpg
An advertisement for a Solar Water Heater dating to 1902
Frank Shuman's sunengine on the March 1916 cover of Hugo Gernsback's The Electrical Experimenter The Electrical Experimenter, Volume 3.pdf
Frank Shuman's sunengine on the March 1916 cover of Hugo Gernsback's The Electrical Experimenter

Records of solar collectors in the United States date to before 1900, [5] involving a black-painted tank mounted on a roof. In 1896 Clarence Kemp of Baltimore enclosed a tank in a wooden box, thus creating the first 'batch water heater' as they are known today. Frank Shuman built the world's first solar thermal power station in Maadi, Egypt, using parabolic troughs to power a 45 to 52 kilowatts (60 to 70 horsepower) engine that pumped 23,000 litres (6,000 US gal) of water per minute from the Nile River to adjacent cotton fields.

Flat-plate collectors for solar water heating were used in Florida and Southern California in the 1920s. Interest grew in North America after 1960, but especially after the 1973 oil crisis.

Solar power is in use in Australia, Canada, China, Germany, India, Israel, Japan, Portugal, Romania, Spain, the United Kingdom and the United States.

Mediterranean

Passive (thermosiphon) solar water heaters on a rooftop in Jerusalem Solarboiler.jpg
Passive (thermosiphon) solar water heaters on a rooftop in Jerusalem

Israel, Cyprus and Greece are the per capita leaders in the use of solar water heating systems supporting 30%–40% of homes. [6]

Flat plate solar systems were perfected and used on a large scale in Israel. In the 1950s a fuel shortage led the government to forbid heating water between 10 pm and 6 am. Levi Yissar built the first prototype Israeli solar water heater and in 1953 he launched the NerYah Company, Israel's first commercial manufacturer of solar water heating. [7] Solar water heaters were used by 20% of the population by 1967. Following the energy crisis in the 1970s, in 1980 Israel required the installation of solar water heaters in all new homes (except high towers with insufficient roof area). [8] As a result, Israel became the world leader in the use of solar energy per capita with 85% of households using solar thermal systems (3% of the primary national energy consumption), [9] estimated to save the country 2 million barrels (320,000 m3) of oil a year. [10] [11]

In 2005, Spain became the world's first country to require the installation of photovoltaic electricity generation in new buildings, and the second (after Israel) to require the installation of solar water heating systems, in 2006. [12]

Asia

New solar hot water installations during 2009, worldwide SolarGlobal2007V2.png
New solar hot water installations during 2009, worldwide

After 1960, systems were marketed in Japan. [5]

Australia has a variety of national and state and regulations for solar thermal starting with MRET in 1997. [13] [14] [15]

Solar water heating systems are popular in China, where basic models start at around 1,500 yuan (US$235), around 80% less than in Western countries for a given collector size. At least 30 million Chinese households have one. The popularity is due to efficient evacuated tubes that allow the heaters to function even under gray skies and at temperatures well below freezing. [16]

Design requirements

The type, complexity and size of a solar water heating system is mostly determined by:

The minimum requirements of the system are typically determined by the amount or temperature of hot water required during winter, when a system's output and incoming water temperature are typically at their lowest. The maximum output of the system is determined by the need to prevent the water in the system from becoming too hot.

Freeze protection

Freeze protection measures prevent damage to the system due to the expansion of freezing transfer fluid. Drainback systems drain the transfer fluid from the system when the pump stops. Many indirect systems use antifreeze (e.g., propylene glycol) in the heat transfer fluid.

In some direct systems, collectors can be manually drained when freezing is expected. This approach is common in climates where freezing temperatures do not occur often but can be less reliable than an automatic system as it relies on an operator.

The third type of freeze protection is freeze-tolerance, where low-pressure water pipes made of silicone rubber simply expand on freezing. One such collector now has European Solar Keymark accreditation.

Overheat protection

When no hot water has been used for a day or two, the fluid in the collectors and storage can reach high temperatures in all non-"drainback" systems. When the storage tank in a "drainback" system reaches its desired temperature, the pumps stop, ending the heating process and thus preventing the storage tank from overheating.

Some active systems deliberately cool the water in the storage tank by circulating hot water through the collector at times when there is little sunlight or at night, losing heat. This is most effective in direct or thermal store plumbing and is virtually ineffective in systems that use evacuated tube collectors, due to their superior insulation. Any collector type may still overheat. High pressure, sealed solar thermal systems ultimately rely on the operation of temperature and pressure relief valves. Low pressure, open vented heaters have simpler, more reliable safety controls, typically an open vent.

Structure and working

Simple designs include a simple glass-topped insulated box with a flat solar absorber made of dark-colored sheet metal, attached to copper heat exchanger pipes, or a set of metal tubes surrounded by an evacuated (near vacuum) glass cylinder. In industrial cases a parabolic mirror can concentrate sunlight on the tube. Heat is stored in a hot water storage tank. The volume of this tank needs to be larger with solar heating systems to compensate for bad weather[ clarification needed ] and because the optimum final temperature for the solar collector[ clarification needed ] is lower than a typical immersion or combustion heater. The heat transfer fluid (HTF) for the absorber may be water, but more commonly (at least in active systems) is a separate loop of fluid containing anti-freeze and a corrosion inhibitor delivers heat to the tank through a heat exchanger (commonly a coil of copper heat exchanger tubing within the tank). Copper is an important component in solar thermal heating and cooling systems because of its high heat conductivity, atmospheric and water corrosion resistance, sealing and joining by soldering and mechanical strength. Copper is used both in receivers and primary circuits (pipes and heat exchangers for water tanks). [17]

The 'drain-back' is another lower-maintenance concept. [18] No anti-freeze is required; instead, all the piping is sloped to cause water to drain back to the tank. The tank is not pressurized and operates at atmospheric pressure. As soon as the pump shuts off, flow reverses and the pipes empty before freezing can occur.

How a solar hot water system works Solar Hot Water Diagram.png
How a solar hot water system works

Residential solar thermal installations fall into two groups: passive (sometimes called "compact") and active (sometimes called "pumped") systems. Both typically include an auxiliary energy source (electric heating element or connection to a gas or fuel oil central heating system) that is activated when the water in the tank falls below a minimum temperature setting, ensuring that hot water is always available. The combination of solar water heating and back-up heat from a wood stove chimney [19] can enable a hot water system to work all year round in cooler climates, without the supplemental heat requirement of a solar water heating system being met with fossil fuels or electricity.

When a solar water heating and hot-water central heating system are used together, solar heat will either be concentrated in a pre-heating tank that feeds into the tank heated by the central heating, or the solar heat exchanger will replace the lower heating element and the upper element will remain to provide for supplemental heat. However, the primary need for central heating is at night and in winter when solar gain is lower. Therefore, solar water heating for washing and bathing is often a better application than central heating because supply and demand are better matched. In many climates, a solar hot water system can provide up to 85% of domestic hot water energy. This can include domestic non-electric concentrating solar thermal systems. In many northern European countries, combined hot water and space heating systems (solar combisystems) are used to provide 15 to 25% of home heating energy. When combined with storage, large scale solar heating can provide 50-97% of annual heat consumption for district heating. [20] [21]

Heat transfer

Direct

Direct systems: (A) Passive CHS system with tank above collector. (B) Active system with pump and controller driven by a photovoltaic panel. DirectSolarSystems.jpg
Direct systems: (A) Passive CHS system with tank above collector. (B) Active system with pump and controller driven by a photovoltaic panel.

Direct or open loop systems circulate potable water through the collectors. They are relatively cheap. Drawbacks include:

  • They offer little or no overheat protection unless they have a heat export pump.
  • They offer little or no freeze protection, unless the collectors are freeze-tolerant.
  • Collectors accumulate scale in hard water areas, unless an ion-exchange softener is used.

The advent of freeze-tolerant designs expanded the market for SWH to colder climates. In freezing conditions, earlier models were damaged when the water turned to ice, rupturing one or more components.

Indirect

Indirect or closed loop systems use a heat exchanger to transfer heat from the "heat-transfer fluid" (HTF) fluid to the potable water. The most common HTF is an antifreeze/water mix that typically uses non-toxic propylene glycol. After heating in the panels, the HTF travels to the heat exchanger, where its heat is transferred to the potable water. Indirect systems offer freeze protection and typically overheat protection.

Propulsion

Passive

Passive systems rely on heat-driven convection or heat pipes to circulate the working fluid. Passive systems cost less and require low or no maintenance, but are less efficient. Overheating and freezing are major concerns.

Active

Active systems use one or more pumps to circulate water and/or heating fluid. This permits a much wider range of system configurations.

Pumped systems are more expensive to purchase and to operate. However, they operate at higher efficiency and can be more easily controlled.

Active systems have controllers with features such as interaction with a backup electric or gas-driven water heater, calculation and logging of the energy saved, safety functions, remote access and informative displays.

Passive direct systems

An integrated collector storage (ICS) system Batch solar thermal collectorColour.jpg
An integrated collector storage (ICS) system

An integrated collector storage (ICS or batch heater) system uses a tank that acts as both storage and collector. Batch heaters are thin rectilinear tanks with a glass side facing the Sun at noon. They are simple and less costly than plate and tube collectors, but they may require bracing if installed on a roof (to support 400–700 lb (180–320 kg) lbs of water), suffer from significant heat loss at night since the side facing the sun is largely uninsulated and are only suitable in moderate climates.

A convection heat storage unit (CHS) system is similar to an ICS system, except the storage tank and collector are physically separated and transfer between the two is driven by convection. CHS systems typically use standard flat-plate type or evacuated tube collectors. The storage tank must be located above the collectors for convection to work properly. The main benefit of CHS systems over ICS systems is that heat loss is largely avoided since the storage tank can be fully insulated. Since the panels are located below the storage tank, heat loss does not cause convection, as the cold water stays at the lowest part of the system.

Active indirect systems

Pressurized antifreeze systems use a mix of antifreeze (almost always low-toxic propylene glycol) and water mix for HTF in order to prevent freeze damage.

Though effective at preventing freeze damage, antifreeze systems have drawbacks:

A drainback system is an active indirect system where the HTF (usually pure water) circulates through the collector, driven by a pump. The collector piping is not pressurized and includes an open drainback reservoir that is contained in conditioned or semi-conditioned space. The HTF remains in the drainback reservoir unless the pump is operating and returns there (emptying the collector) when the pump is switched off. The collector system, including piping, must drain via gravity into the drainback tank. Drainback systems are not subject to freezing or overheating. The pump operates only when appropriate for heat collection, but not to protect the HTF, increasing efficiency and reducing pumping costs. [22]

Do-it-yourself (DIY)

Plans for solar water heating systems are available on the Internet. [23] DIY SWH systems are usually cheaper than commercial ones, and they are used both in the developed and developing world. [24] [25]

Comparison

CharacteristicICS (Batch)Thermo­siphonActive directActive indirectDrain­backBubble pump
Low profile-unobtrusiveGreen check.svgGreen check.svgGreen check.svgGreen check.svg
Lightweight collectorGreen check.svgGreen check.svgGreen check.svgGreen check.svg
Survives freezing weatherGreen check.svgGreen check.svgGreen check.svgGreen check.svg
Low maintenanceGreen check.svgGreen check.svgGreen check.svgGreen check.svgGreen check.svg
Simple: no ancillary controlGreen check.svgGreen check.svgGreen check.svg
Retrofit potential to existing storeGreen check.svgGreen check.svgGreen check.svgGreen check.svg
Space saving: no extra storage tankGreen check.svgGreen check.svg
Comparison of SWH systems. Source: Solar Water Heating Basics—homepower.com [26]

Components

Collector

Solar thermal collectors capture and retain heat from the sun and use it to heat a liquid. [27] Two important physical principles govern the technology of solar thermal collectors:

Flat-plate solar thermal collector, viewed from roof-level Flat-plate solar thermal collector, viewed from roof-level.png
Flat-plate solar thermal collector, viewed from roof-level

Flat plate solar

Flat plate collectors are an extension of the idea to place a collector in an 'oven'-like box with glass directly facing the Sun. [29] Most flat plate collectors have two horizontal pipes at the top and bottom, called headers, and many smaller vertical pipes connecting them, called risers. The risers are welded (or similarly connected) to thin absorber fins. Heat-transfer fluid (water or water/antifreeze mix) is pumped from the hot water storage tank or heat exchanger into the collectors' bottom header, and it travels up the risers, collecting heat from the absorber fins, and then exits the collector out of the top header. Serpentine flat plate collectors differ slightly from this "harp" design, and instead use a single pipe that travels up and down the collector. However, since they cannot be properly drained of water, serpentine flat plate collectors cannot be used in drainback systems.

The type of glass used in flat plate collectors is almost always low-iron, tempered glass. Such glass can withstand significant hail without breaking, which is one of the reasons that flat-plate collectors are considered the most durable collector type.

Unglazed or formed collectors are similar to flat-plate collectors, except they are not thermally insulated nor physically protected by a glass panel. Consequently, these types of collectors are much less efficient when water temperature exceeds ambient air temperatures. For pool heating applications, the water to be heated is often colder than the ambient roof temperature, at which point the lack of thermal insulation allows additional heat to be drawn from the surrounding environment. [30]

Evacuated tube

Evacuated tube solar water heater on a roof Sistema por Hidroneumatico (Calentador solar para alta presion).JPG
Evacuated tube solar water heater on a roof

Evacuated tube collectors (ETC) are a way to reduce the heat loss, [29] inherent in flat plates. Since heat loss due to convection cannot cross a vacuum, it forms an efficient isolation mechanism to keep heat inside the collector pipes. [31] Since two flat glass sheets are generally not strong enough to withstand a vacuum, the vacuum is created between two concentric tubes. Typically, the water piping in an ETC is therefore surrounded by two concentric tubes of glass separated by a vacuum that admits heat from the sun (to heat the pipe) but that limits heat loss. The inner tube is coated with a thermal absorber. [32] Vacuum life varies from collector to collector, from 5 years to 15 years.

Flat plate collectors are generally more efficient than ETC in full sunshine conditions. However, the energy output of flat plate collectors is reduced slightly more than ETCs in cloudy or extremely cold conditions. [29] Most ETCs are made out of annealed glass, which is susceptible to hail, failing given roughly golf ball -sized particles. ETCs made from "coke glass," which has a green tint, are stronger and less likely to lose their vacuum, but efficiency is slightly reduced due to reduced transparency. ETCs can gather energy from the sun all day long at low angles due to their tubular shape. [33]

Pump

PV pump

One way to power an active system is via a photovoltaic (PV) panel. To ensure proper pump performance and longevity, the (DC) pump and PV panel must be suitably matched. Although a PV-powered pump does not operate at night, the controller must ensure that the pump does not operate when the sun is out but the collector water is not hot enough.

PV pumps offer the following advantages:

  • Simpler/cheaper installation and maintenance
  • Excess PV output can be used for household electricity use or put back into the grid
  • Can dehumidify living space [34]
  • Can operate during a power outage
  • Avoids the carbon consumption from using grid-powered pumps

Bubble pump

The bubble separator of a bubble-pump system

A bubble pump (also known as geyser pump) is suitable for flat panel as well as vacuum tube systems. In a bubble pump system, the closed HTF circuit is under reduced pressure, which causes the liquid to boil at low temperature as the sun heats it. The steam bubbles form a geyser, causing an upward flow. The bubbles are separated from the hot fluid and condensed at the highest point in the circuit, after which the fluid flows downward toward the heat exchanger caused by the difference in fluid levels. [35] [36] [37] The HTF typically arrives at the heat exchanger at 70 °C and returns to the circulating pump at 50 °C. Pumping typically starts at about 50 °C and increases as the sun rises until equilibrium is reached.

Controller

A differential controller senses temperature differences between water leaving the solar collector and the water in the storage tank near the heat exchanger. The controller starts the pump when the water in the collector is sufficiently about 8–10 °C warmer than the water in the tank, and stops it when the temperature difference reaches 3–5 °C. This ensures that stored water always gains heat when the pump operates and prevents the pump from excessive cycling on and off. (In direct systems the pump can be triggered with a difference around 4 °C because they have no heat exchanger.)

Tank

The simplest collector is a water-filled metal tank in a sunny place. The sun heats the tank. This was how the first systems worked. [5] This setup would be inefficient due to the equilibrium effect: as soon as heating of the tank and water begins, the heat gained is lost to the environment and this continues until the water in the tank reaches ambient temperature. The challenge is to limit the heat loss.

Insulated tank

ICS or batch collectors reduce heat loss by thermally insulating the tank. [29] [38] This is achieved by encasing the tank in a glass-topped box that allows heat from the sun to reach the water tank. [39] The other walls of the box are thermally insulated, reducing convection and radiation. [40] The box can also have a reflective surface on the inside. This reflects heat lost from the tank back towards the tank. In a simple way one could consider an ICS solar water heater as a water tank that has been enclosed in a type of 'oven' that retains heat from the sun as well as heat of the water in the tank. Using a box does not eliminate heat loss from the tank to the environment, but it largely reduces this loss.

Standard ICS collectors have a characteristic that strongly limits the efficiency of the collector: a small surface-to-volume ratio. [41] Since the amount of heat that a tank can absorb from the sun is largely dependent on the surface of the tank directly exposed to the sun, it follows that the surface size defines the degree to which the water can be heated by the sun. Cylindrical objects such as the tank in an ICS collector have an inherently small surface-to-volume ratio. Collectors attempt to increase this ratio for efficient warming of the water. Variations on this basic design include collectors that combine smaller water containers and evacuated glass tube technology, a type of ICS system known as an Evacuated Tube Batch (ETB) collector. [29]

Applications

Evacuated tube

ETSCs can be more useful than other solar collectors during winter season. ETCs can be used for heating and cooling purposes in industries like pharmaceutical and drug, paper, leather and textile and also for residential houses, hospitals, nursing home, hotels, swimming pool etc.

An ETC can operate at a range of temperatures from medium to high for solar hot water, swimming pool, air conditioning and solar cooker.

ETCs higher operational temperature range (up to 200 °C (392 °F)) makes them suitable for industrial applications such as steam generation, heat engine and solar drying.

Swimming pools

Floating pool covering systems and separate STCs are used for pool heating.

Pool covering systems, whether solid sheets or floating disks, act as insulation and reduce heat loss. Much heat loss occurs through evaporation, and using a cover slows evaporation.

STCs for nonpotable pool water use are often made of plastic. Pool water is mildly corrosive due to chlorine. Water is circulated through the panels using the existing pool filter or supplemental pump. In mild environments, unglazed plastic collectors are more efficient as a direct system. In cold or windy environments evacuated tubes or flat plates in an indirect configuration are used in conjunction with a heat exchanger. This reduces corrosion. A fairly simple differential temperature controller is used to direct the water to the panels or heat exchanger either by turning a valve or operating the pump. Once the pool water has reached the required temperature, a diverter valve is used to return water directly to the pool without heating. [42] Many systems are configured as drainback systems where the water drains into the pool when the water pump is switched off.

The collector panels are usually mounted on a nearby roof, or ground-mounted on a tilted rack. Due to the low temperature difference between the air and the water, the panels are often formed collectors or unglazed flat plate collectors. A simple rule-of-thumb for the required panel area needed is 50% of the pool's surface area. [42] This is for areas where pools are used in the summer season only. Adding solar collectors to a conventional outdoor pool, in a cold climate, can typically extend the pool's comfortable usage by months and more if an insulating pool cover is used. [30] When sized at 100% coverage most solar hot water systems are capable of heating a pool anywhere from as little as 4 °C for a wind-exposed pool, to as much as 10 °C for a wind-sheltered pool covered consistently with a solar pool blanket. [43]

An active solar energy system analysis program may be used to optimize the solar pool heating system before it is built.

Energy production

A laundromat in California with panels on the roof providing hot washing water Laundromat-SolarCell.png
A laundromat in California with panels on the roof providing hot washing water

The amount of heat delivered by a solar water heating system depends primarily on the amount of heat delivered by the sun at a particular place (insolation). In the tropics insolation can be relatively high, e.g. 7 kWh/m2 per day, versus e.g., 3.2 kWh/m2 per day in temperate areas. Even at the same latitude average insolation can vary a great deal from location to location due to differences in local weather patterns and the amount of overcast. Calculators are available for estimating insolation at a site. [44] [45] [46]

Below is a table that gives a rough indication of the specifications and energy that could be expected from a solar water heating system involving some 2 m2 of absorber area of the collector, demonstrating two evacuated tube and three flat plate solar water heating systems. Certification information or figures calculated from those data are used. The bottom two rows give estimates for daily energy production (kWh/day) for a tropical and a temperate scenario. These estimates are for heating water to 50 °C above ambient temperature.

With most solar water heating systems, the energy output scales linearly with the collector surface area. [47]

Daily energy production (kWth.h) of five solar thermal systems. The evac tube systems used below both have 20 tubes.
TechnologyFlat plateFlat plateFlat plateETCETC
ConfigurationDirect activeThermo­siphonIndirect activeIndirect activeDirect active
Overall size (m2)2.491.981.872.852.97
Absorber size (m2)2.211.981.722.852.96
Maximum efficiency0.680.740.610.570.46
Energy production (kWh/day):
– Insolation 3.2 kWh/m2/day (temperate)
e.g. Zurich, Switzerland
5.33.93.34.84.0
– Insolation 6.5 kWh/m2/day (tropical)
e.g. Phoenix, USA
11.28.87.19.98.4

The figures are fairly similar between the above collectors, yielding some 4 kWh/day in a temperate climate and some 8 kWh/day in a tropical climate when using a collector with a 2 m2 absorber. In the temperate scenario this is sufficient to heat 200 litres of water by some 17 °C. In the tropical scenario the equivalent heating would be by some 33 °C. Many thermosiphon systems have comparable energy output to equivalent active systems. The efficiency of evacuated tube collectors is somewhat lower than for flat plate collectors because the absorbers are narrower than the tubes and the tubes have space between them, resulting in a significantly larger percentage of inactive overall collector area. Some methods of comparison [48] calculate the efficiency of evacuated tube collectors based on the actual absorber area and not on the space occupied as has been done in the above table. Efficiency is reduced at higher temperatures.

Costs

In sunny, warm locations, where freeze protection is not necessary, an ICS (batch type) solar water heater can be cost effective. [40] In higher latitudes, design requirements for cold weather add to system complexity and cost. This increases initial costs, but not life-cycle costs. The biggest single consideration is therefore the large initial financial outlay of solar water heating systems. [49] Offsetting this expense can take years. [50] The payback period is longer in temperate environments. [51] Since solar energy is free, operating costs are small. At higher latitudes, solar heaters may be less effective due to lower insolation, possibly requiring larger and/or dual-heating systems. [51] In some countries government incentives can be significant.

Cost factors (positive and negative) include:

Payback times can vary greatly due to regional sun, extra cost due to frost protection needs of collectors, household hot water use etc. For instance in central and southern Florida the payback period could easily be 7 years or less rather than the 12.6 years indicated on the chart for the United States. [52]

Costs and payback periods for residential SWH systems with savings of 200 kWh/month (using 2010 data), ex maintenance costs, subsidies and installation costs
CountryCurr­encySystem costSubsidy(%)Effective costElectricity cost/kWhElectricity savings/monthPayback period(y)
Flag of Brazil.svg  Brazil BRL2500 [53] 025000.25504.2
Flag of South Africa.svg  South Africa ZAR1400015 [54] 119000.91805.5
Flag of Australia (converted).svg  Australia AUD5000 [55] 40 [56] 30000.18 [57] 366.9
Flag of Belgium (civil).svg  Belgium EUR4000 [58] 50 [59] 20000.1 [60] 208.3
Flag of the United States.svg  United States USD5000 [61] 30 [62] 35000.1158 [63] 23.1612.6
Flag of the United Kingdom.svg  United Kingdom GBP4800 [64] 048000.11 [65] 2218.2

The payback period is shorter given greater insolation. However, even in temperate areas, solar water heating is cost effective. The payback period for photovoltaic systems has historically been much longer. [51] Costs and payback period are shorter if no complementary/backup system is required. [50] thus extending the payback period of such a system.

Subsidies

Australia operates a system of Renewable Energy Credits, based on national renewable energy targets. [56]

The Toronto Solar Neighbourhoods Initiative offers subsidies for the purchase of solar water heating units. [66]

Energy footprint and life cycle assessment

Energy footprint

The source of electricity in an active SWH system determines the extent to which a system contributes to atmospheric carbon during operation. Active solar thermal systems that use mains electricity to pump the fluid through the panels are called 'low carbon solar'. In most systems the pumping reduces the energy savings by about 8% and the carbon savings of the solar by about 20%. [67] However, low power pumps operate with 1-20W. [68] [69] Assuming a solar collector panel delivering 4 kWh/day and a pump running intermittently from mains electricity for a total of 6 hours during a 12-hour sunny day, the potentially negative effect of such a pump can be reduced to about 3% of the heat produced.

However, PV-powered active solar thermal systems typically use a 5–30 W PV panel and a small, low power diaphragm pump or centrifugal pump to circulate the water. This reduces the operational carbon and energy footprint.

Alternative non-electrical pumping systems may employ thermal expansion and phase changes of liquids and gases.

Life cycle energy assessment

Recognised standards can be used to deliver robust and quantitative life cycle assessments (LCA). LCA considers the financial and environmental costs of acquisition of raw materials, manufacturing, transport, using, servicing and disposal of the equipment. Elements include:

In terms of energy consumption, some 60% goes into the tank, with 30% towards the collector [70] (thermosiphon flat plate in this case). In Italy, [71] some 11 giga-joules of electricity are used in producing SWH equipment, with about 35% goes toward the tank, with another 35% towards the collector. The main energy-related impact is emissions. The energy used in manufacturing is recovered within the first 2–3 years of use (in southern Europe).

By contrast the energy payback time in the UK is reported as only 2 years. This figure was for a direct system, retrofitted to an existing water store, PV pumped, freeze tolerant and of 2.8 sqm aperture. For comparison, a PV installation took around 5 years to reach energy payback, according to the same comparative study. [72]

In terms of CO2 emissions, a large fraction of the emissions saved is dependent on the degree to which gas or electricity is used to supplement the sun. Using the Eco-indicator 99 points system as a yardstick (i.e. the yearly environmental load of an average European inhabitant) in Greece, [70] a purely gas-driven system may have fewer emissions than a solar system. This calculation assumes that the solar system produces about half of the hot water requirements of a household. But because methane (CH4) emissions from the natural gas fuel cycle [73] dwarf the greenhouse impact of CO2, the net greenhouse emissions (CO2e) from gas-driven systems are vastly greater than for solar heaters, especially if supplemental electricity is also from carbon-free generation.[ citation needed ]

A test system in Italy produced about 700 kg of CO2, considering all the components of manufacture, use and disposal. Maintenance was identified as an emissions-costly activity when the heat transfer fluid (glycol-based) was replaced. However, the emissions cost was recovered within about two years of use of the equipment. [71]

In Australia, life cycle emissions were also recovered. The tested SWH system had about 20% of the impact of an electrical water heater and half that of a gas water heater. [50]

Analysing their lower impact retrofit freeze-tolerant solar water heating system, Allen et al. (qv) reported a production CO2 impact of 337 kg, which is around half the environmental impact reported in the Ardente et al. (qv) study.

System specification and installation

Standards

Europe

United States

Canada

Australia

All relevant participants of the Large-scale Renewable Energy Target and Small-scale Renewable Energy Scheme must comply with the above Acts. [75]

Worldwide use

Solar hot water system installed on low cost housing in the Kouga Local Municipality, South Africa South Africa-Kouga-Solar hot water-001.jpg
Solar hot water system installed on low cost housing in the Kouga Local Municipality, South Africa
Top countries using solar thermal power, worldwide (GWth) [12] [76] [77] [78] [79] [80] [81]
#Country200520062007200820092010201120122013
1Flag of the People's Republic of China.svg China55.567.984.0105.0101.5117.6--262.3 [82]
Flag of Europe.svg EU11.213.515.520.022.823.525.629.731.4
2Flag of the United States.svg United States1.61.81.72.014.415.3--16.8 [82]
3Flag of Germany.svg Germany7.88.99.810.511.412.1
4Flag of Turkey.svg Turkey5.76.67.17.58.49.3--11.0 [82]
5Flag of Australia (converted).svg Australia1.21.31.21.35.05.8--5.8 [82]
6Flag of Brazil.svg Brazil1.62.22.52.43.74.3--6.7 [82]
7Flag of Japan.svg Japan5.04.74.94.14.34.0--3.2 [82]
8Flag of Austria.svg Austria2.53.03.22.83.43.5
9Flag of Greece.svg Greece2.72.92.92.92.92.9
10Flag of Israel.svg Israel3.33.83.52.62.82.9--2.9 [82]
World (GWth)88105126149172196---

European Union

Solar thermal heating in European Union (MWth) [83] [84] [85]
#Country200820092010 [78] 201120122013
1Flag of Germany.svg Germany7,7669,0369,83110,49611,41612,055
2Flag of Austria.svg Austria2,2683,0313,2272,7923,4483,538
3Flag of Greece.svg Greece2,7082,8532,8552,8612,8852,915
4Flag of Italy.svg Italy1,1241,4101,7532,1522,3802,590
5Flag of Spain.svg Spain9881,3061,5431,6592,0752,238
6Flag of France.svg France1,1371,2871,4701,2771,6911,802
7Flag of Poland.svg Poland2543574596378481,040
8Flag of Portugal.svg Portugal223395526547677717
9Flag of the Czech Republic.svg Czech Republic116148216265625681
10Flag of Switzerland (Pantone).svg  Switzerland416538627---
11Flag of the Netherlands.svg Netherlands254285313332605616
12Flag of Denmark.svg Denmark293339379409499550
13Flag of Cyprus.svg Cyprus485490491499486476
14Flag of the United Kingdom.svg UK270333374460455475
15Flag of Belgium (civil).svg Belgium188204230226334374
16Flag of Sweden.svg Sweden202217227236337342
17Flag of Ireland.svg Ireland5285106111177196
18Flag of Slovenia.svg Slovenia96111116123142148
19Flag of Hungary.svg Hungary1859105120125137
20Flag of Slovakia.svg Slovakia677384100108113
21Flag of Romania.svg Romania *6680737493110
22Flag of Bulgaria.svg Bulgaria *225674815859
23Flag of Malta.svg Malta*252932363435
24Flag of Finland.svg Finland *182023233033
25Flag of Luxembourg.svg Luxembourg *161922252327
26Flag of Estonia.svg Estonia*11131012
27Flag of Latvia.svg Latvia *11131012
28Flag of Lithuania.svg Lithuania *122368
TotalEU27+Sw (GWth)19,0821,6023.4925.5529.6631.39
* = estimation, F = France as a whole

See also

Related Research Articles

An autonomous building is a building designed to be operated independently from infrastructural support services such as the electric power grid, gas grid, municipal water systems, sewage treatment systems, storm drains, communication services, and in some cases, public roads.

<span class="mw-page-title-main">Solar energy</span> Radiant light and heat from the Sun, harnessed with technology

Solar energy is radiant light and heat from the Sun that is harnessed using a range of technologies such as solar power to generate electricity, solar thermal energy, and solar architecture. It is an essential source of renewable energy, and its technologies are broadly characterized as either passive solar or active solar depending on how they capture and distribute solar energy or convert it into solar power. Active solar techniques include the use of photovoltaic systems, concentrated solar power, and solar water heating to harness the energy. Passive solar techniques include orienting a building to the Sun, selecting materials with favorable thermal mass or light-dispersing properties, and designing spaces that naturally circulate air.

<span class="mw-page-title-main">Solar thermal energy</span> Technology using sunlight for heat

Solar thermal energy (STE) is a form of energy and a technology for harnessing solar energy to generate thermal energy for use in industry, and in the residential and commercial sectors.

<span class="mw-page-title-main">Water heating</span> Thermodynamic process that uses energy sources to heat water

Water heating is a heat transfer process that uses an energy source to heat water above its initial temperature. Typical domestic uses of hot water include cooking, cleaning, bathing, and space heating. In industry, hot water and water heated to steam have many uses.

<span class="mw-page-title-main">Solar thermal collector</span> Device that collects heat

A solar thermal collector collects heat by absorbing sunlight. The term "solar collector" commonly refers to a device for solar hot water heating, but may refer to large power generating installations such as solar parabolic troughs and solar towers or non water heating devices such as solar cooker, solar air heaters.

<span class="mw-page-title-main">Parabolic trough</span> Technology used in concentrated solar power stations

A parabolic trough is a type of solar thermal collector that is straight in one dimension and curved as a parabola in the other two, lined with a polished metal mirror. The sunlight which enters the mirror parallel to its plane of symmetry is focused along the focal line, where objects are positioned that are intended to be heated. In a solar cooker, for example, food is placed at the focal line of a trough, which is cooked when the trough is aimed so the Sun is in its plane of symmetry.

<span class="mw-page-title-main">Thermal energy storage</span> Technologies to store thermal energy

Thermal energy storage (TES) is achieved with widely different technologies. Depending on the specific technology, it allows excess thermal energy to be stored and used hours, days, months later, at scales ranging from the individual process, building, multiuser-building, district, town, or region. Usage examples are the balancing of energy demand between daytime and nighttime, storing summer heat for winter heating, or winter cold for summer air conditioning. Storage media include water or ice-slush tanks, masses of native earth or bedrock accessed with heat exchangers by means of boreholes, deep aquifers contained between impermeable strata; shallow, lined pits filled with gravel and water and insulated at the top, as well as eutectic solutions and phase-change materials.

<span class="mw-page-title-main">Electric heating</span> Process in which electrical energy is converted to heat

Electric heating is a process in which electrical energy is converted directly to heat energy. Common applications include space heating, cooking, water heating and industrial processes. An electric heater is an electrical device that converts an electric current into heat. The heating element inside every electric heater is an electrical resistor, and works on the principle of Joule heating: an electric current passing through a resistor will convert that electrical energy into heat energy. Most modern electric heating devices use nichrome wire as the active element; the heating element, depicted on the right, uses nichrome wire supported by ceramic insulators.

Renewable heat is an application of renewable energy referring to the generation of heat from renewable sources; for example, feeding radiators with water warmed by focused solar radiation rather than by a fossil fuel boiler. Renewable heat technologies include renewable biofuels, solar heating, geothermal heating, heat pumps and heat exchangers. Insulation is almost always an important factor in how renewable heating is implemented.

<span class="mw-page-title-main">Ground source heat pump</span> System to transfer heat to/from the ground

A ground source heat pump is a heating/cooling system for buildings that use a type of heat pump to transfer heat to or from the ground, taking advantage of the relative constancy of temperatures of the earth through the seasons. Ground-source heat pumps (GSHPs) – or geothermal heat pumps (GHP), as they are commonly termed in North America – are among the most energy-efficient technologies for providing HVAC and water heating, using far less energy than can be achieved by burning a fuel in a boiler/furnace or by use of resistive electric heaters.

<span class="mw-page-title-main">Solar combisystem</span> Solar collection system which provides heating and cooling

A solar combisystem provides both solar space heating and cooling as well as hot water from a common array of solar thermal collectors, usually backed up by an auxiliary non-solar heat source.

The Drake Landing Solar Community (DLSC) is a planned community in Okotoks, Alberta, Canada, equipped with a central solar heating system and other energy efficient technologies. This heating system is the first of its kind in North America, although much larger systems have been built in northern Europe. The 52 homes in the community are heated with a solar district heating system that is charged with heat originating from solar collectors on the garage roofs and is enabled for year-round heating by underground seasonal thermal energy storage (STES).

A solar controller is an electronic device that controls the circulating pump in a solar hot water system to harvest as much heat as possible from the solar panels and protect the system from overheating. The basic job of the controller is to turn the circulating pump on when there is heat available in the panels, moving the working fluid through the panels to the heat exchanger at the thermal store. Heat is available whenever the temperature of the solar panel is greater than the temperature of the water in the heat exchanger. Overheat protection is achieved by turning the pump off when the store reaches its maximum temperature and sometimes cooling the store by turning the pump on when the store is hotter than the panels.

Energy recycling is the energy recovery process of using energy that would normally be wasted, usually by converting it into electricity or thermal energy. Undertaken at manufacturing facilities, power plants, and large institutions such as hospitals and universities, it significantly increases efficiency, thereby reducing energy costs and greenhouse gas pollution simultaneously. The process is noted for its potential to mitigate global warming profitably. This work is usually done in the form of combined heat and power or waste heat recovery.

<span class="mw-page-title-main">Solar hot water in Australia</span>

Solar hot water refers to water heated by solar energy, a renewable energy source derived from the sun. This process involves thermal collectors, often called solar panels, which absorb solar energy to increase the temperature of the water. The heated water is then stored in a reservoir tank for future use. Solar hot water systems are utilized for a variety of purposes, including domestic and commercial water heating, contributing to heating and cooling systems, and providing process heat for industrial applications.

<span class="mw-page-title-main">Photovoltaic thermal hybrid solar collector</span>

Photovoltaic thermal collectors, typically abbreviated as PVT collectors and also known as hybrid solar collectors, photovoltaic thermal solar collectors, PV/T collectors or solar cogeneration systems, are power generation technologies that convert solar radiation into usable thermal and electrical energy. PVT collectors combine photovoltaic solar cells, which convert sunlight into electricity, with a solar thermal collector, which transfers the otherwise unused waste heat from the PV module to a heat transfer fluid. By combining electricity and heat generation within the same component, these technologies can reach a higher overall efficiency than solar photovoltaic (PV) or solar thermal (T) alone.

<span class="mw-page-title-main">Hot water storage tank</span> Tank used for storing hot water for heating or domestic use

A hot water storage tank is a water tank used for storing hot water for space heating or domestic use.

<span class="mw-page-title-main">Storage water heater</span> Thermodynamic device that uses energy to raise the temperature of water

A storage water heater, or a hot water system (HWS), is a domestic water heating appliance that uses a hot water storage tank to maximize water heating capacity and provide instantaneous delivery of hot water. Conventional storage water heaters use a variety of fuels, including natural gas, propane, fuel oil, and electricity. Less conventional water heating technologies, such as heat pump water heaters and solar water heaters, can also be categorized as storage water heaters.

Renewable thermal energy is the technology of gathering thermal energy from a renewable energy source for immediate use or for storage in a thermal battery for later use.

<span class="mw-page-title-main">Cold district heating</span> District heating with very low temperatures

Cold district heating is a technical variant of a district heating network that operates at low transmission temperatures well below those of conventional district heating systems and can provide both space heating and cooling. Transmission temperatures in the range of approx. 10 to 25 °C are common, allowing different consumers to heat and cool simultaneously and independently of each other. Hot water is produced and the building heated by water heat pumps, which obtain their thermal energy from the heating network, while cooling can be provided either directly via the cold heat network or, if necessary, indirectly via chillers. Cold local heating is sometimes also referred to as an anergy network. The collective term for such systems in scientific terminology is 5th generation district heating and cooling. Due to the possibility of being operated entirely by renewable energies and at the same time contributing to balancing the fluctuating production of wind turbines and photovoltaic systems, cold local heating networks are considered a promising option for a sustainable, potentially greenhouse gas and emission-free heat supply.

References

  1. "Solar Collectors ...Behind the Glass | Home Power Magazine". 2013-01-28. Archived from the original on 2013-01-28. Retrieved 2022-08-04.
  2. "Solar Water Heating". www.nrel.gov. Retrieved 2023-10-05.
  3. Brian Norton (2011) Solar Water Heaters: A Review of Systems Research and Design Innovation, Green. 1, 189–207, ISSN (Online) 1869-8778
  4. 1 2 "Renewables Global Status Report". REN21 . Retrieved 11 May 2019.
  5. 1 2 3 Solar Evolution – The History of Solar Energy, John Perlin, California Solar Center
  6. Del Chiaro, Bernadette & Telleen-Lawton, Timothy (April 2007). "Solar Water Heating (How California Can Reduce Its Dependence on Natural Gas)" (PDF). Environment California Research and Policy Center. Archived from the original on October 21, 2007. Retrieved 29 September 2007.{{cite web}}: CS1 maint: unfit URL (link)
  7. John Christopher Bacher (2000). Petrotyranny. Dundurn. p. 70. ISBN   978-0-88866-956-8.
  8. "Israel's Solar Industry: Reclaiming a Legacy of Success". Climate.org. Retrieved 10 February 2012.
  9. Minicy Catom Software Engineering Ltd. www.catom.com. "The Samuel Neaman Institute for Advanced Studies in Science and Technology – Publications – Solar energy for the production of heat Summary and recommendations of the 4th assembly of the energy forum at SNI". Neaman.org.il. Archived from the original on February 9, 2012. Retrieved 2012-06-23.
  10. Israeli Section of the International Solar Energy Society, edited by Gershon Grossman, Faculty of Mechanical Energy, Technion, Haifa; Final draft.
  11. "Solar Hot Water". Project Drawdown. 2020-02-06. Retrieved 2020-12-05.
  12. 1 2 "Renewables Global Status Report: Energy Transformation Continues Despite Economic Slowdown". ren21.net. 13 May 2009. Archived from the original on February 9, 2010. Retrieved 20 May 2010.{{cite web}}: CS1 maint: unfit URL (link)
  13. "5 Star Housing – Performance Based Building Regulation Delivers". Docstoc.com. Retrieved 10 February 2012.
  14. "Buildings – Think Change". Environment.gov.au. 1 November 2010. Archived from the original on May 7, 2010. Retrieved 10 February 2012.
  15. Israel del Mundo and Ian Wills (2005) The Economics of the Mandatory Renewable Energy Target (MRET), Department of Economics Monash University, Australia.
  16. Energy-Hungry China Warms to Solar Water Heaters discusses China Himin Solar Energy Group in Dezhou. Reuters article, posted on Planet Ark site
  17. 2011 global status report by Renewable Energy Policy Network for the 21st Century (REN21)
  18. Botpaev, R.; Louvet, Y.; Perers, B.; Furbo, S.; Vajen, K. (2016-04-01). "Drainback solar thermal systems: A review". Solar Energy. Special issue: Progress in Solar Energy. 128: 41–60. Bibcode:2016SoEn..128...41B. doi:10.1016/j.solener.2015.10.050. ISSN   0038-092X. S2CID   55264769.
  19. Gulland, John. "Heating water with a wood stove". woodheat.org. Wood Heat Organization Inc. Retrieved 29 March 2012.
  20. Wong, Bill (June 28, 2011), "Drake Landing Solar Community" (PDF), Drake Landing Solar Community, IDEA/CDEA District Energy/CHP 2011 Conference, Toronto, pp. 1–30, archived from the original (PDF) on 10 September 2016, retrieved 21 April 2013
  21. Wittrup, Sanne (14 June 2015). "Verdens største damvarmelager indviet i Vojens". Ingeniøren . Archived from the original on 19 October 2015.
  22. Lane, T. & Olson, K. (2002). "Solar hot water for cold climates: Part II – Drainback systems". Homepower Magazine. 86: 62–70.
  23. "DMOZ DIY Solar water heating collector". Dmoz.org. 2010-05-03. Retrieved 2012-06-23.
  24. Technical Information Online. "DIY solar water heating in the developing world". Practicalaction.org. Retrieved 2012-06-23.
  25. "archive". Archived from the original on 2011-02-07.
  26. "Solar Water Heating Basics". homepower.com. Retrieved August 1, 2015.
  27. Norton, Brian (2013). Harnessing Solar Heat. Springer. ISBN   978-94-007-7275-5.
  28. 1 2 W.M. Rohsenow, J.P. Harnett, Y.I. Cho (1998). Handbook of heat transfer 3rd Ed.. McGraw-Hill, Chicago, US.
  29. 1 2 3 4 5 C. Marken (2009). "Solar collectors: Behind the glass". HomePower. 133: 70–76. Archived from the original on 2013-01-28. Retrieved 2013-04-22.
  30. 1 2 D. Lane (2003). "Solar pool heating basics, Part 1". HomePower. 94: 70–77.
  31. Yong Kim; Taebeom Seo (2007). "Thermal performances comparisons of the glass evacuated tube solar collectors with shapes of absorber tube". Renewable Energy. 32 (5): 772. doi:10.1016/j.renene.2006.03.016.
  32. Shi Yueyan; Yang Xiaoji (1999). "Selective absorbing surface for evacuated solar collector tubes". Renewable Energy. 16 (1–4): 632–634. doi:10.1016/S0960-1481(98)00240-7.
  33. Sabiha, M. A.; Saidur, R.; Mekhilef, Saad; Mahian, Omid (1 November 2015). "Progress and latest developments of evacuated tube solar collectors". Renewable and Sustainable Energy Reviews. 51: 1038–1054. doi:10.1016/j.rser.2015.07.016.
  34. "Getting into Hot Water — Part 1". GreenBuildingAdvisor. September 12, 2012.
  35. A van Houten (Sunnovations), How a Geyser Pump works Archived 2011-01-14 at the Wayback Machine
  36. Wilfried C. Sorensen (1985) Autogeneous solar water heater, US Patent 4607688.
  37. Bubble pump description at bubbleactionpumps.com
  38. C. Schmidt; A. Goetzberger A. (1990). "Single-tube integrated collector storage systems with transparent insulation and involute reflector". Solar Energy. 45 (2): 93. Bibcode:1990SoEn...45...93S. doi:10.1016/0038-092X(90)90033-9.
  39. M. Smyth; P.C. Eames; B. Norton (2006). "Integrated collector storage solar water heaters". Renewable and Sustainable Energy Reviews. 10 (6): 503. doi:10.1016/j.rser.2004.11.001.
  40. 1 2 M. Souliotis; S. Kalogirou; Y. Tripanagnostopoulos (2009). "Modelling of an ICS solar water heater using artificial neural networks and TRNSYS". Renewable Energy. 34 (5): 1333. doi:10.1016/j.renene.2008.09.007.
  41. Y. Tripanagnostopoulos; M. Souliotis; T. Nousia (1999). "Solar ICS systems with two cylindrical storage tanks". Renewable Energy. 16 (1–4): 665–668. doi:10.1016/S0960-1481(98)00248-1.
  42. 1 2 D. Lane (2003). "Solar pool heating basics, Part 2". HomePower. 95: 60–67.
  43. "How Much Will A Solar Pool Heating System Heat My Pool".
  44. "interactive maps". Sunbird.jrc.it. 30 October 2008. Archived from the original on 19 July 2012. Retrieved 10 February 2012.
  45. "A Performance Calculator for Grid-Connected PV Systems". Rredc.nrel.gov. Archived from the original on January 18, 2012. Retrieved 10 February 2012.
  46. "National Renewable Energy Laboratory (NREL) Home Page". Nrel.gov. 6 February 2012. Retrieved 10 February 2012.
  47. SRCC Certification Programs. solar-rating.org
  48. ISO 9806-2:1995. Test methods for solar collectors – Part 2: Qualification test procedures. International Organization for Standardization, Geneva, Switzerland
  49. H. M. Healey (2007). "Economics of Solar". Cogeneration & Distributed Generation Journal. 22 (3): 35–49. doi:10.1080/15453660709509122.
  50. 1 2 3 R. H. Crawford; G. J. Treloar; B. D. Ilozor; P. E. D. Love (2003). "Comparative greenhouse emissions analysis of domestic solar hot water systems". Building Research & Information. 31: 34–47. doi:10.1080/09613210210160800. S2CID   111202685.
  51. 1 2 3 C. Marken; J. Sanchez (2008). "PV vs. Solar Water Heating: Simple Solar Payback". HomePower. 127: 40–45.
  52. Simplified Residential Solar Hot Water System Calculator, Florida Solar Energy Center (2007).
  53. Milton S. & Kaufman S. (2005). Solar Water Heating as a Climate Protection Strategy: The Role for Carbon Finance. Green Markets International. Arlington MA, US
  54. "Eskom". Eskom. Retrieved 10 February 2012.
  55. "Hills Solar Evacuated Tube Solar Hot Water Systems". Enviro-friendly.com. Archived from the original on 17 February 2012. Retrieved 10 February 2012.
  56. 1 2 Energy Efficient Homes Package. environment.gov.au
  57. "AER issues report on high electricity prices in South Australia". Aer.gov.au. 4 March 2008. Archived from the original on March 3, 2012. Retrieved 10 February 2012.
  58. WAT kost een zonneboiler? Archived 2009-11-04 at the Wayback Machine vlaanderen.be, 30 April 2008.
  59. "Premies voor energiebesparende maatregelen | Vlaanderen.be: uw link met de overheid". Vlaanderen.be. Archived from the original on September 27, 2011. Retrieved 10 February 2012.
  60. "No aspx | Electrabel". Electrabel.be. Retrieved 10 February 2012.
  61. "SRP EarthWise Solar Energy for your home". Srpnet.com. Retrieved 10 February 2012.
  62. "Federal Tax Credits for Energy Efficiency : ENERGY STAR". Energystar.gov. 2012-01-03. Retrieved 2012-06-23.
  63. "Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State".
  64. "Solar water heating systems explained – benefits, costs, savings, earnings, suitability". Energysavingtrust.org.uk. Retrieved 2012-06-23.
  65. "Electricity Running Cost Calculator | Electricity Prices | Electricity Costs". Ukpower.co.uk. Retrieved 2012-06-23.
  66. "Breaking News". Toronto.com. Archived from the original on July 19, 2011.
  67. C. Martin and M. Watson (2001). DTI publication URN 01/1292. London, UK
  68. "DC Solar Pumps". lainginc.itt.com. Archived from the original on January 19, 2010. Retrieved 5 November 2010.{{cite web}}: CS1 maint: unfit URL (link)
  69. "Nominaties VSK Awards" [Laing ITT Ecocirc pump nominated for prestigious VSK award in heating category]. bouwwereld.nl (in Dutch). 2009-11-25. Retrieved 5 November 2010.
  70. 1 2 3 G. Tsilingiridis, G. Martinopoulos & N. Kyriakis (2004). "Life cycle environmental impact of a thermosyphonic domestic solar hot water system in comparison with electrical and gas water heating". Renewable Energy. 29 (8): 1277. doi:10.1016/j.renene.2003.12.007.
  71. 1 2 F. Ardente; G. Beccali; M. Cellura (2005). "Life cycle assessment of a solar thermal collector: Sensitivity analysis, energy and environmental balances". Renewable Energy. 30 (2): 109. doi:10.1016/j.renene.2004.05.006.
  72. S.R. Allen, G.P. Hammond, H. Harajli1, C.I. Jones, M.C. McManus and A.B. Winnett (2008). "Integrated appraisal of micro-generators: Methods and applications". Proceedings of the ICE - Energy. 161 (2): 5, Fig. 1. CiteSeerX   10.1.1.669.9412 . doi:10.1680/ener.2008.161.2.73. S2CID   110151825.{{cite journal}}: CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  73. "Howarth methane Biogeo lecture 2019" http://www.eeb.cornell.edu/howarth/documents/Howarth_methane-Biogeo-lecture_2019-0301.pdf
  74. "Solar Rating & Certification Corporation – System Ratings". solar-rating.org. 2016. Retrieved June 23, 2016.
  75. "RET Compliance". Australian Government, Clean Energy Regulator. 2 January 2013. Retrieved 2014-09-25.
  76. Renewables Global Status Report 2009 Update. Deutsche Gesellschaft für Technische Zusammenarbeit. ren21.net
  77. "Renewables Global Status Report 2010" (PDF). REN21. Archived from the original (PDF) on August 20, 2010. Retrieved 2012-06-23.
  78. 1 2 Solar thermal energy barometer 2010 EurObserv'ER Systèmes solaires Le journal des énergies renouvelables n° 197, 5/2010
  79. Werner Weiss & Franz Mauthner (May 2011). "Solar Heat Worldwide" (PDF). Archived from the original (PDF) on August 12, 2011. Retrieved 2012-06-23.
  80. Werner Weiss and Franz Mauthner Solar Heat Worldwide Markets and Contribution to the Energy Supply 2010. iea-shc.org
  81. Solar thermal and concentrated solar power barometer. EurObserv'ER n° 209 (May 2012).
  82. 1 2 3 4 5 6 7 Mauthner, Franz; Weiss, Werner; Spörk-Dür, Monika (June 2015). "Solar Heat Worldwide" (PDF). International Energy Agency Solar Heating & Cooling Programme. Retrieved 6 April 2017.
  83. Solar thermal market in Europe 2010 Trends and Market Statistics, ESTIF 6/2011
  84. Solar thermal market grows strongly in Europe 2009 ESTIF 2010
  85. Solar thermal market grows strongly in Europe 2008 ESTIF 5/2009