Classification of electromagnetic fields

Last updated

In differential geometry and theoretical physics, the classification of electromagnetic fields is a pointwise classification of bivectors at each point of a Lorentzian manifold. It is used in the study of solutions of Maxwell's equations and has applications in Einstein's theory of relativity.

Contents

The classification theorem

The electromagnetic field at a point p (i.e. an event) of a Lorentzian spacetime is represented by a real bivector F = Fab defined over the tangent space at p.

The tangent space at p is isometric as a real inner product space to E1,3. That is, it has the same notion of vector magnitude and angle as Minkowski spacetime. To simplify the notation, we will assume the spacetime is Minkowski spacetime. This tends to blur the distinction between the tangent space at p and the underlying manifold; fortunately, nothing is lost by this specialization, for reasons we discuss as the end of the article.

The classification theorem for electromagnetic fields characterizes the bivector F in relation to the Lorentzian metric η = ηab by defining and examining the so-called "principal null directions". Let us explain this.

The bivector Fab yields a skew-symmetric linear operator Fab = Facηcb defined by lowering one index with the metric. It acts on the tangent space at p by raFabrb. We will use the symbol F to denote either the bivector or the operator, according to context.

We mention a dichotomy drawn from exterior algebra. A bivector that can be written as F = vw, where v, w are linearly independent, is called simple. Any nonzero bivector over a 4-dimensional vector space either is simple, or can be written as F = vw + xy, where v, w, x, and y are linearly independent; the two cases are mutually exclusive. Stated like this, the dichotomy makes no reference to the metric η, only to exterior algebra. But it is easily seen that the associated skew-symmetric linear operator Fab has rank 2 in the former case and rank 4 in the latter case. [1]

To state the classification theorem, we consider the eigenvalue problem for F, that is, the problem of finding eigenvalues λ and eigenvectors r which satisfy the eigenvalue equation

The skew-symmetry of F implies that:

A 1-dimensional subspace generated by a null eigenvector is called a principal null direction of the bivector.

The classification theorem characterizes the possible principal null directions of a bivector. It states that one of the following must hold for any nonzero bivector:

Furthermore, for any non-null bivector, the two eigenvalues associated with the two distinct principal null directions have the same magnitude but opposite sign, λ = ±ν, so we have three subclasses of non-null bivectors:

  • spacelike: ν = 0
  • timelike : ν ≠ 0 and rank F = 2
  • non-simple: ν ≠ 0 and rank F = 4,

where the rank refers to the rank of the linear operator F.[ clarification needed ]

Physical interpretation

The algebraic classification of bivectors given above has an important application in relativistic physics: the electromagnetic field is represented by a skew-symmetric second rank tensor field (the electromagnetic field tensor) so we immediately obtain an algebraic classification of electromagnetic fields.

In a cartesian chart on Minkowski spacetime, the electromagnetic field tensor has components

where and denote respectively the components of the electric and magnetic fields, as measured by an inertial observer (at rest in our coordinates). As usual in relativistic physics, we will find it convenient to work with geometrised units in which . In the "Index gymnastics" formalism of special relativity, the Minkowski metric is used to raise and lower indices.

Invariants

The fundamental invariants of the electromagnetic field are:

.

(Fundamental means that every other invariant can be expressed in terms of these two.)

A null electromagnetic field is characterised by . In this case, the invariants reveal that the electric and magnetic fields are perpendicular and that they are of the same magnitude (in geometrised units). An example of a null field is a plane electromagnetic wave in Minkowski space.

A non-null field is characterised by . If , there exists an inertial reference frame for which either the electric or magnetic field vanishes. (These correspond respectively to magnetostatic and electrostatic fields.) If , there exists an inertial frame in which electric and magnetic fields are proportional.

Curved Lorentzian manifolds

So far we have discussed only Minkowski spacetime. According to the (strong) equivalence principle, if we simply replace "inertial frame" above with a frame field, everything works out exactly the same way on curved manifolds.

See also

Notes

  1. The rank given here corresponds to that as a linear operator or tensor; the rank as defined for a k-vector is half that given here.

Related Research Articles

<span class="mw-page-title-main">Minkowski space</span> Spacetime used in theory of relativity

In mathematical physics, Minkowski space combines inertial space and time manifolds with a non-inertial reference frame of space and time into a four-dimensional model relating a position to the field.

<span class="mw-page-title-main">Lorentz group</span> Lie group of Lorentz transformations

In physics and mathematics, the Lorentz group is the group of all Lorentz transformations of Minkowski spacetime, the classical and quantum setting for all (non-gravitational) physical phenomena. The Lorentz group is named for the Dutch physicist Hendrik Lorentz.

In relativistic physics, Lorentz symmetry or Lorentz invariance, named after the Dutch physicist Hendrik Lorentz, is an equivalence of observation or observational symmetry due to special relativity implying that the laws of physics stay the same for all observers that are moving with respect to one another within an inertial frame. It has also been described as "the feature of nature that says experimental results are independent of the orientation or the boost velocity of the laboratory through space".

Rindler coordinates are a coordinate system used in the context of special relativity to describe the hyperbolic acceleration of a uniformly accelerating reference frame in flat spacetime. In relativistic physics the coordinates of a hyperbolically accelerated reference frame constitute an important and useful coordinate chart representing part of flat Minkowski spacetime. In special relativity, a uniformly accelerating particle undergoes hyperbolic motion, for which a uniformly accelerating frame of reference in which it is at rest can be chosen as its proper reference frame. The phenomena in this hyperbolically accelerated frame can be compared to effects arising in a homogeneous gravitational field. For general overview of accelerations in flat spacetime, see Acceleration and Proper reference frame.

The Kerr–Newman metric is the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity that describes the spacetime geometry in the region surrounding an electrically charged and rotating mass. It generalizes the Kerr metric by taking into account the field energy of an electromagnetic field, in addition to describing rotation. It is one of a large number of various different electrovacuum solutions; that is, it is a solution to the Einstein–Maxwell equations that account for the field energy of an electromagnetic field. Such solutions do not include any electric charges other than that associated with the gravitational field, and are thus termed vacuum solutions.

In general relativity, the pp-wave spacetimes, or pp-waves for short, are an important family of exact solutions of Einstein's field equation. The term pp stands for plane-fronted waves with parallel propagation, and was introduced in 1962 by Jürgen Ehlers and Wolfgang Kundt.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

When studying and formulating Albert Einstein's theory of general relativity, various mathematical structures and techniques are utilized. The main tools used in this geometrical theory of gravitation are tensor fields defined on a Lorentzian manifold representing spacetime. This article is a general description of the mathematics of general relativity.

<span class="mw-page-title-main">Electromagnetic tensor</span> Mathematical object that describes the electromagnetic field in spacetime

In electromagnetism, the electromagnetic tensor or electromagnetic field tensor is a mathematical object that describes the electromagnetic field in spacetime. The field tensor was first used after the four-dimensional tensor formulation of special relativity was introduced by Hermann Minkowski. The tensor allows related physical laws to be written very concisely, and allows for the quantization of the electromagnetic field by Lagrangian formulation described below.

In differential geometry and theoretical physics, the Petrov classification describes the possible algebraic symmetries of the Weyl tensor at each event in a Lorentzian manifold.

The Gödel metric, also known as the Gödel solution or Gödel universe, is an exact solution, found in 1949 by Kurt Gödel, of the Einstein field equations in which the stress–energy tensor contains two terms: the first representing the matter density of a homogeneous distribution of swirling dust particles, and the second associated with a negative cosmological constant.

A frame field in general relativity is a set of four pointwise-orthonormal vector fields, one timelike and three spacelike, defined on a Lorentzian manifold that is physically interpreted as a model of spacetime. The timelike unit vector field is often denoted by and the three spacelike unit vector fields by . All tensorial quantities defined on the manifold can be expressed using the frame field and its dual coframe field.

In general relativity, an electrovacuum solution (electrovacuum) is an exact solution of the Einstein field equation in which the only nongravitational mass–energy present is the field energy of an electromagnetic field, which must satisfy the (curved-spacetime) source-free Maxwell equations appropriate to the given geometry. For this reason, electrovacuums are sometimes called (source-free) Einstein–Maxwell solutions.

In theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.

In relativistic classical field theories of gravitation, particularly general relativity, an energy condition is a generalization of the statement "the energy density of a region of space cannot be negative" in a relativistically phrased mathematical formulation. There are multiple possible alternative ways to express such a condition such that can be applied to the matter content of the theory. The hope is then that any reasonable matter theory will satisfy this condition or at least will preserve the condition if it is satisfied by the starting conditions.

<span class="mw-page-title-main">Electromagnetic stress–energy tensor</span>

In relativistic physics, the electromagnetic stress–energy tensor is the contribution to the stress–energy tensor due to the electromagnetic field. The stress–energy tensor describes the flow of energy and momentum in spacetime. The electromagnetic stress–energy tensor contains the negative of the classical Maxwell stress tensor that governs the electromagnetic interactions.

<span class="mw-page-title-main">Covariant formulation of classical electromagnetism</span> Ways of writing certain laws of physics

The covariant formulation of classical electromagnetism refers to ways of writing the laws of classical electromagnetism in a form that is manifestly invariant under Lorentz transformations, in the formalism of special relativity using rectilinear inertial coordinate systems. These expressions both make it simple to prove that the laws of classical electromagnetism take the same form in any inertial coordinate system, and also provide a way to translate the fields and forces from one frame to another. However, this is not as general as Maxwell's equations in curved spacetime or non-rectilinear coordinate systems.

<span class="mw-page-title-main">Maxwell's equations in curved spacetime</span> Electromagnetism in general relativity

In physics, Maxwell's equations in curved spacetime govern the dynamics of the electromagnetic field in curved spacetime or where one uses an arbitrary coordinate system. These equations can be viewed as a generalization of the vacuum Maxwell's equations which are normally formulated in the local coordinates of flat spacetime. But because general relativity dictates that the presence of electromagnetic fields induce curvature in spacetime, Maxwell's equations in flat spacetime should be viewed as a convenient approximation.

In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References